явления электромагнетизма и электромагнитное поле

Тема 1.3. Электромагнетизм.

Ханс Кристиан Эрстед

Первооткрывателем электромагнетизма считается датский физик Ханс Кристиан Э́рстед, обнаруживший воздействие электрического тока на магнит.

До начала XIX века никто не предполагал, что электричество и магнетизм что-то связывает. И даже разделы физики, в которых они рассматривались, были разными. Доказательство существования такой связи было получено Эрстедом в 1820 г. во время проведения опыта на лекции в университете. На экспериментальном столе рядом с проводником тока находился магнитный компас. В момент замыкания электрической цепи магнитная стрелка компаса отклонилась от своего первоначального положения. Повторив опыт, Эрстед получил такой же результат.

Силовые линии проводника с током

Как и магнитное поле, образованное постоянным магнитом, магнитное поле проводника с током характеризуется силовыми линиями.

Если прямой проводник, по которому идёт ток, пропустить через отверстие в листе картона, на котором рассыпаны мелкие железные или стальные опилки, то они образуют концентрические окружности, центр которых располагается на оси проводника. Эти окружности представляют собой силовые линии магнитного поля проводника с током.

Но если придать проводнику другую форму, картина будет иная.

Магнитное поле катушки с током:

Магнитное поле соленоида

Изогнув спиралью проводник с током, мы получим соленоид (от греческого «трубка»). Силовые линии создаваемого им магнитного поля представляют собой замкнутые линии. Наиболее часто они расположены внутри витков.

Простейший электромагнит

Магнитное поле электромагнита можно регулировать, увеличивая или уменьшая силу тока или количество витков в обмотке. Каждый виток создаёт своё магнитное поле. И чем больше витков в электромагните, тем сильнее его поле. Соответственно, если уменьшить количество витков, то магнитное поле ослабляется.

Первый электромагнит создал английский инженер Уильям Стёрджен в 1825 г. Его устройство представляло собой стержень изогнутой формы, сделанный из мягкого железа и покрытый лаком для изоляции от провода. На стержень был намотан толстый провод из меди.

Рисунок электромагнита Стёрджена

В современных электромагнитах сердечники изготавливают из ферромагнетиков – веществ, которые обладают высокой намагниченностью при температуре ниже точки Кюри даже в отсутствии внешнего магнитного поля. Для обмотки применяют изолированный алюминиевый или медный провод.

Параллельные проводники в магнитном поле.

Проводники с током в магнитном поле

Нужно заметить, что Ампер исследовал проводник в магнитном поле, созданном не постоянным магнитом, а другим проводником с током.

Объединив электричество и магнетизм, Ампер назвал новую область физики электродинамикой.

Магнитное поле. Индукция.

Если к средней части магнита прикрепить нить и позволить ему свободно вращаться, подвесив его к штативу, то он развернётся таким образом, что один из его полюсов будет ориентирован строго на север, а другой строго на юг. Конец магнита, обращённый на север, называют северным полюсом (N), а противоположный – южным (S).

Магнит притягивает другие магниты, не соприкасаясь с ними. Одноимённые полюсы разных магнитов отталкиваются, а разноимённые притягиваются. Не правда ли, это напоминает взаимодействие электрических зарядов?

Физики XIX века пытались представить магнитное поле как аналог электростатического. Они рассматривали полюсы магнита как положительный и отрицательный магнитные заряды (северный и южный полюсы соответственно). Но вскоре поняли, что изолированных магнитных зарядов не существует.

Заряды в электрическом диполе можно легко отделить друг от друга, разрезав на две части проводник, в разных частях которого они находятся. Но с магнитом так не получится. Разделив таким же способом постоянный магнит, мы получим два новых магнита, каждый из которых тоже будет иметь два магнитных полюса.

И сколько бы не делили их дальше, всё равно будут получаться магнитные диполи.

Наиболее сильно притягиваются к магнитам ферромагнетики . Причём их собственное магнитное поле, создаваемое молекулами, атомами или ионами, в сотни раз превосходит вызвавшее его внешнее магнитное поле. Ферромагнетиками являются такие химические элементы, как железо, кобальт, никель, а также некоторые сплавы.

Парамагнетики – вещества, намагничивающиеся во внешнем поле в его направлении. Притягиваются к магнитам слабо. Химические элементы алюминий, натрий, магний, соли железа, кобальта, никеля и др. – примеры парамагнетиков.

Но есть материалы, которые не притягиваются, а отталкиваются от магнитов. Их называют диамагнетиками . Они намагничиваются против направления внешнего магнитного поля, но отталкиваются от магнитов довольно слабо. Это медь, серебро, цинк, золото, ртуть и др.

Если векторы магнитной индукции поля одинаковы по величине и направлению во всех точках поля, то такое поле называется однородным.

Графически магнитное поле изображают с помощью силовых линий.

Картину расположения этих линий можно получить с помощью простого опыта. Рассыпав на куске гладкого картона или стекла железные опилки и положив его на магнит, можно увидеть, как опилки располагаются по определённым линиям. Эти линии имеют форму силовых линий магнитного поля.

Правило буравчика (винта) и правило правой руки

Эти правила дают возможность просто и довольно точно определить направление линий магнитной индукции, не используя никаких физических приборов.

tuUdyEXpbr5 7ozYbXViXtY yECOU47MjtjSGKw7br29fTdBkF6gXRepYzYrFJtTdLSO8sK7lBu9l9kCjfMOcpo83YONUfpZjf4Owk4SanISVg

Если направление поступательного движения буравчика совпадает с направлением движения тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитной индукции.

Если мысленно обхватить правой рукой проводник с током таким образом, чтобы отогнутый на 90° большой палец показывал направление тока, то остальные пальцы покажут направление линий магнитной индукции поля, создаваемого этим током, и направление вектора магнитной индукции, направленного по касательной к этим линиям.

Андре Мари Ампер

где I – сила тока в проводнике;

Направление силы Ампера удобно определять по правилу левой руки.

Располагаем левую руку таким образом, чтобы четыре пальца указывали направление тока, а линии поля входили в ладонь. Тогда отогнутый на 90 0 большой палец укажет направление силы Ампера.

Электромагнитная индукция (индукция значит наведение) это явление, при котором в замкнутом контуре возникает электрический ток при изменении магнитного потока, пронизывающего его.

Явление электромагнитной индукции было обнаружено в 1831 г. М. Фарадеем. Ток, возникающий при электромагнитной индукции, называют индукционным. Магнитным потоком Φ через площадь S контура называют величину

где B – модуль вектора магнитной индукции, α – угол между вектором и нормалью к плоскости контура

Самоиндукция является важным частным случаем электромагнитной индукции, когда изменяющийся магнитный поток, вызывающий ЭДС индукции, создается током в самом контуре. Если ток в рассматриваемом контуре по каким-то причинам изменяется, то изменяется и магнитное поле этого тока, а, следовательно, и собственный магнитный поток, пронизывающий контур. В контуре возникает ЭДС самоиндукции, которая препятствует изменению тока в контуре.

Собственный магнитный поток Φ, пронизывающий контур или катушку с током, пропорционален силе тока I :

Коэффициент пропорциональности L в этой формуле называется коэффициентом самоиндукции или индуктивностью катушки. Единица индуктивности в СИ называется генри (Гн).

Взаимоиндукция (взаимная индукция) — возникновение электродвижущей силы (ЭДС индукции) в одном проводнике вследствие изменения силы тока в другом проводнике или вследствие изменения взаимного расположения проводников. Взаимоиндукция — частный случай более общего явления — электромагнитной индукции. При изменении тока в одном из проводников или при изменении взаимного расположения проводников происходит изменение магнитного потока через (воображаемую) поверхность, «натянутую» на контур второго, созданного магнитным полем, порожденным током в первом проводнике, что по закону электромагнитной индукции вызывает возникновение ЭДС во втором проводнике. Если второй проводник замкнут, то под действием ЭДС взаимоиндукции в нём образуется индуцированный ток. И наоборот, изменение тока во второй цепи вызовет появление ЭДС в первой. Направление тока, возникшего при взаимоиндукции, определяется по правилу Ленца. Правило указывает на то, что изменение тока в одной цепи (катушке) встречает противодействие со стороны другой цепи (катушки).

Чем большая часть магнитного поля первой цепи пронизывает вторую цепь, тем сильнее взаимоиндукция между цепями. С количественной стороны явление взаимоиндукции характеризуется взаимной индуктивностью (коэффициентом взаимоиндукции, коэффициентом связи). Для изменения величины индуктивной связи между цепями, катушки делают подвижными. Приборы, служащие для изменения взаимоиндукции между цепями, называются вариометрами связи.

Явление взаимоиндукции широко используется для передачи энергии из одной электрической цепи в другую, для преобразования напряжения с помощью трансформатора.

Источник

Магнетизм для чайников: основные формулы, определение, примеры

d3d6365da60b4ef3b0824c519cde4365

Часто бывает, что задачу не удается решить из-за того, что под рукой нет нужной формулы. Выводить формулу с самого начала – дело не самое быстрое, а у нас на счету каждая минута.

Ниже мы собрали вместе основные формулы по теме «Электричество и Магнетизм». Теперь, решая задачи, вы сможете пользоваться этим материалом как справочником, чтобы не терять время на поиски нужной информации.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Магнетизм: определение

Магнетизм – это взаимодействие движущихся электрических зарядов, происходящее посредством магнитного поля.

Поле – особая форма материи. В рамках стандартной модели существует электрическое, магнитное, электромагнитные поля, поле ядерных сил, гравитационное поле и поле Хиггса. Возможно, есть и другие гипотетические поля, о которых мы пока что можем только догадываться или не догадываться вовсе. Сегодня нас интересует магнитное поле.

Магнитная индукция

Так же, как заряженные тела создают вокруг себя электрическое поле, движущиеся заряженные тела порождают магнитное поле. Магнитное поле не только создается движущимися зарядами (электрическим током), но еще и действует на них. По сути магнитное поле можно обнаружить только по действию на движущиеся заряды. А действует оно на них с силой, называемой силой Ампера, о которой речь пойдет позже.

aHR0cDovL3d3dy5saXZlc2NpZW5jZS5jb20vaW1hZ2VzL2kvMDAwLzA4MS8wMDQvb3JpZ2luYWwvbWFnbmV0aWMtZmllbGQuanBnИзображение магнитного поля при помощи силовых линий

Прежде чем мы начнем приводить конкретные формулы, нужно рассказать про магнитную индукцию.

Магнитная индукция – это силовая векторная характеристика магнитного поля.

Она обозначается буквой B и измеряется в Тесла (Тл). По аналогии с напряженностью для электрического поля Е магнитная индукция показывает, с какой силой магнитное поле действует на заряд.

Кстати, вы найдете много интересных фактов на эту тему в нашей статье про теорию магнитного поля и интересные факты о магнитном поле Земли.

Как определять направление вектора магнитной индукции? Здесь нас интересует практическая сторона вопроса. Самый частый случай в задачах – это магнитное поле, создаваемое проводником с током, который может быть либо прямым, либо в форме окружности или витка.

Для определения направления вектора магнитной индукции существует правило правой руки. Приготовьтесь задействовать абстрактное и пространственное мышление!

Если взять проводник в правую руку так, что большой палец будет указывать на направление тока, то загнутые вокруг проводника пальцы покажут направление силовых линий магнитного поля вокруг проводника. Вектор магнитной индукции в каждой точке будет направлен по касательной к силовым линиям.

2000px Manoderecha.svg

Сила Ампера

Представим, что есть магнитное поле с индукцией B. Если мы поместим в него проводник длиной l, по которому течет ток силой I, то поле будет действовать на проводник с силой:

Screenshot 1

Это и есть сила Ампера. Угол альфа – угол между направлением вектора магнитной индукции и направлением тока в проводнике.

Направление силы Ампера определяется по правилу левой руки: если расположить левую руку так, чтобы в ладонь входили линии магнитной индукции, а вытянутые пальцы указывали бы направление тока, отставленный большой палец укажет направление силы Ампера.

sila ampera

Сила Лоренца

Мы выяснили, что поле действует на проводник с током. Но если это так, то изначально оно действует отдельно на каждый движущийся заряд. Сила, с которой магнитное поле действует на движущийся в нем электрический заряд, называется силой Лоренца. Здесь важно отметить слово «движущийся», так на неподвижные заряды магнитное поле не действует.

Итак, частица с зарядом q движется в магнитном поле с индукцией В со скоростью v, а альфа – это угол между вектором скорости частицы и вектором магнитной индукции. Тогда сила, которая действует на частицу:

Screenshot 2

Как определить направление силы Лоренца? По правилу левой руки. Если вектор индукции входит в ладонь, а пальцы указывают на направление скорости, то отогнутый большой палец покажет направление силы Лоренца. Отметим, что так направление определяется для положительно заряженных частиц. Для отрицательных зарядов полученное направление нужно поменять на противоположное.

0057e855d7676fc334bf8211481c3911df61a62d

Если частица массы m влетает в поле перпендикулярно линиям индукции, то она будет двигаться по окружности, а сила Лоренца будет играть роль центростремительной силы. Радиус окружности и период обращения частицы в однородном магнитном поле можно найти по формулам:

Screenshot 3

Взаимодействие токов

Рассмотрим два случая. Первый – ток течет по прямому проводу. Второй – по круговому витку. Как мы знаем, ток создает магнитное поле.

В первом случае магнитная индукция провода с током I на расстоянии R от него считается по формуле:

Screenshot 4

Мю – магнитная проницаемость вещества, мю с индексом ноль – магнитная постоянная.

Во втором случае магнитная индукция в центре кругового витка с током равна:

Screenshot 5

Также при решении задач может пригодиться формула для магнитного поля внутри соленоида. Соленоид – это катушка, то есть множество круговых витков с током.

solenoid magnetic field

Пусть их количество – N, а длина самого соленоилда – l. Тогда поле внутри соленоида вычисляется по формуле:

Screenshot 6

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Магнитный поток и ЭДС

Если магнитная индукция – векторная характеристика магнитного поля, то магнитный поток – скалярная величина, которая также является одной из самых важных характеристик поля. Представим, что у нас есть какая-то рамка или контур, имеющий определенную площадь. Магнитный поток показывает, какое количество силовых линий проходит через единицу площади, то есть характеризует интенсивность поля. Измеряется в Веберах (Вб) и обозначается Ф.

Screenshot 7

S – площадь контура, альфа – угол между нормалью (перпендикуляром) к плоскости контура и вектором В.

img13

При изменении магнитного потока через контур в контуре индуцируется ЭДС, равная скорости изменения магнитного потока через контур. Кстати, подробнее о том, что такое электродвижущая сила, вы можете почитать в еще одной нашей статье.

Screenshot 8

По сути формула выше – это формула для закона электромагнитной индукции Фарадея. Напоминаем, что скорость изменения какой-либо величины есть не что иное, как ее производная по времени.

Для магнитного потока и ЭДС индукции также справедливо обратное. Изменение тока в контуре приводит к изменению магнитного поля и, соответственно, к изменению магнитного потока. При этом возникает ЭДС самоиндукции, которая препятствует изменению тока в контуре. Магнитный поток, который пронизывает контур с током, называется собственным магнитным потоком, пропорционален силе тока в контуре и вычисляется по формуле:

Screenshot 9

L – коэффициент пропорциональности, называемый индуктивностью, который измеряется в Генри (Гн). На индуктивность влияют форма контура и свойства среды. Для катушки с длиной l и с числом витков N индуктивность рассчитывается по формуле:

Screenshot 10

Формула для ЭДС самоиндукции:

Screenshot 11

Энергия магнитного поля

Screenshot 12

Объемная плотность энергии поля:

Screenshot 13

Источник

Электромагнетизм.

Электромагнетизм – это явление, наблюдаемое в металлах, которое возникает при взаимодействии электрического тока и магнетизма, т.е. явление, иллюстрирующее неразрывную связь двух важных характеристик металла.

История появления понятия магнитного поля вокруг проводника с током неразрывно связана с именем датского физика Ханса Кристиана Эрстеда. Именно он впервые зафиксировал явление электромагнетизма при проведении открытой лекции, когда приблизил к проводнику, по которому пропускали ток, компас. Ученый заметил, что магнитная стрелка компаса отклонилась, что явилось маркером наличия магнитного поля вблизи проводника.

В постоянных магнитах нет возможности потери магнитных свойств, с дальнейшим их возвратом. Обычно такие магниты имеют форму подковы, стрежня или кольца.

Если материал обладает магнитными свойствами только при прохождении электрического тока по обмотке (катушке), то такой металл не является постоянным магнитом, т.е. он электромагнит.

С целью увеличения силы магнитного поля, обмотка электромагнита содержит много витков и называется соленоидом.

Как правило, соленоиды наматывают на сердечник из магнитного материала, в частности железа, стали, меди. Когда по катушке пропускают ток, сердечник намагничивается, и его магнитное поле добавляется в поле соленоида, усиливая его.

Направление линий магнитного поля зависит от направления тока в проводе, т.е. в соленоиде. Южный полюс магнитного поля соленоида можно наблюдать при прохождении тока по часовой стрелке, при обратном движении тока, при взгляде с торца, наблюдается северный полюс.

Соленоид используется в электромагнитах. Его магнитное поле можно включать и выключать, управляя током. Соленоиды также применяются в микрофонах и громкоговорителях, электромагнитах на дверных замках, различных видах клапанов, электрических деталях автомобилей.

Источник

Магнетизм (электромагнетизм): что это такое в теории элементарной физики

Главная страница » Магнетизм (электромагнетизм): что это такое в теории элементарной физики

effekt magnetizma

Силу, образующуюся в результате течения электрического тока через проводник (например, через участок провода или кабеля), характеризуют как электромагнетизм. При таких условиях, когда существует магнетизм, проводник находится в области магнитного поля. Направление магнитного поля относительно «северного» / «южного» полюсов определяется направлением тока, текущего через проводник.

Роль электромагнетизма в электротехнике

Магнетизм играет важную роль в электротехнике (электронике). Многие электронные и электрические компоненты:

попросту не способны работать в условиях отсутствия эффекта магнетизма. По сути, любая катушка, выполненная намоткой провода, даёт эффект электромагнетизма в момент течения электрического тока. Для лучшего понимания магнетизма и электромагнетизма в частности, логично рассмотреть физику работы магнитов и магнетизма.

Какой видится природа магнетизма?

Магнетизм нередко присутствуют в естественном состоянии, например, в виде продуктов добываемой минеральной руды. Причём двумя основными типами элементов природного магнетизма выступают:

Если указанную пару естественных магнитов подвесить на нить, оба займут положение, соответствующее магнитному полю Земли, которое всегда указывает на север.

magnitnoe pole zemliПолюса Земли лежат в основе эффекта электромагнетизма — явления, с которым приходится сталкиваться не только инженерам-физикам в исследованиях, но также обычным людям в хозяйственной практике

Достаточно наглядно демонстрирует эффект магнетизма стрелка туристического компаса. Относительно практических применений магнетизм природного происхождения редко принимается во внимание.

Обусловлено это низким уровнем эффекта магнетизма, характерным для таких объектов, плюс следует брать в расчёт создание искусственных магнитов. Люди научились делать искусственные магниты разных форм, размеров, силы.

Эффект магнетизма поддерживается объектами двух форм, представляющих:

Причём используемый тип магнита зависит от конкретного применения. Применяется масса различных типов материалов под изготовление магнитов:

Что интересно, будучи в естественном состоянии материала, некоторые элементы списка, например, никель и кобальт, демонстрируют крайне низкие величины магнетизма.

Однако если эти элементы «легируются» с другими материалами — пероксидом железа или алюминия, формируются очень сильные магниты, получившие необычные названия:

Материал в немагнитном состоянии имеет молекулярную структуру в виде разрозненных цепочек (отдельных микро-магнитов), свободно расположенных в случайном порядке.

Общий эффект такого расположения приводит к нулевому или очень слабому эффекту магнетизма. Объясняется подобное явление случайным расположением отдельного молекулярного магнита, имеющего тенденцию нейтрализовать соседние молекулы.

vistraivanie magnitnogo polyaФормирование поля в структуре материала: 1 – хаотичным случайным образом расположенные магнитные домены не дают эффекта магнетизма; 2 – упорядоченные ровно выстроенные домены дают выраженный эффект магнетизма

Когда материал намагничен, случайное расположение молекул изменяется. В итоге микроскопические случайные молекулярные магниты «выстраиваются» последовательным расположением. Этот эффект молекулярного выравнивания ферромагнитных материалов известен как теория Вебера.

Магнетизм и выравнивание молекулы куска железа

Теория Вебера основана на магнитных свойствах атомов благодаря действию вращения атомов электронов. Группы атомов объединяются, а магнитные поля вращаются в одном направлении. Материалы составляют микроскопические магниты на молекулярном уровне.

Структура большинства намагниченных материалов состоит из микроскопических элементов, выстроенных в одном направлении для создания только северного полюса и в другом направлении для создания южного полюса.

Материал, в структуре которого молекулярные магниты сосредоточены по всем направлениям, имеет «нейтральные» молекулярные частицы, нейтрализующие любой эффект магнетизма. Эти области молекулярных магнитов именуются «доменами».

Любому материалу характерно создание орбитальных и вращающихся электронов магнитного поля, полностью зависящего от степени выравнивания доменов в материале. Эта степень выравнивания, как правило, определяется величиной намагниченности (М).

magnitnii potok v katushkeСхематичная демонстрация формирования силовых линий: 1 – индуцируемый ток в рабочем материале; 2 – течение тока внутри проводников катушки; 3 – магнитное поле

Внутренняя структура немагнитного материала показывает М = 0. Однако некоторые из доменов могут оставаться выровненными по границам небольших областей в материале. Эффект приложения намагничивающей силы к материалу заключается в выравнивании некоторых доменов для получения ненулевого значения намагничивания.

Как только сила намагничивания нейтрализована, магнетизм внутри материала остаётся на некотором уровне, либо быстро затухнет в зависимости от используемого материала. Эта способность материала сохранять свойство магнетизма называется «Остаточная намагниченность».

Материалы, обладающие свойствами сохранения магнетизма, демонстрируют достаточно высокую способность к остаточной намагниченности, а потому часто используются для изготовления постоянных магнитов.

В то же время материалы, обладающие свойством быстрой потери магнетизма, демонстрируют низкую способность остаточной намагниченности. Из таких материалов, изготавливают, к примеру, сердечники для реле и соленоидов.

xray disk 220 220smartfon poko 220 220jump starter 220 220

Что такое магнитный поток?

Любым магнитам, независимо от формы, присуще характерное свойство — наличие пары полюсов. Внутренний магнетизм и молекулярные цепи полюсов образуют своеобразную цепочку невидимых линий потока организованной и сбалансированной структуры.

Эти линии потока образуют магнитное поле. Форма такого поля в некоторых частях более интенсивная, чем в других. Причём область магнита (традиционно концевая), обладающая наибольшим уровнем магнетизма, являются активной областью полюса.

magnitnie polusaПримерно такой вид формирования полей можно наблюдать (с помощью специальной техники) в области двух сближаемых противоположными полюсами магнитов

Линии потока — векторные поля, не видны невооруженным глазом, но доступны к определению, например, с помощью компаса. Полюса всегда присутствуют парами. Всегда существует область «северного» полюса и область «южного» полюса.

Поля отображаются визуально силовыми линиями, определяющими полюс на каждом конце материала, где линии потока более плотные и концентрированные. Линии, образующие поле, показывающие направление и степень интенсивности, называются силовыми линиями (магнитным потоком). Традиционно такой поток обозначается греческим символом «Фи» (φ).

Магнетизм — эффект определения силовых линий

Как показано выше, магнитное поле является наиболее сильным вблизи полюсов магнита, где линии потока расположены близко друг к другу. Общее направление потока – традиционно от северного полюса (N) к южному (S) полюсу. Кроме того, силовые линии образуют замкнутые петли, выходящие на северный и на южный полюс.

Однако магнитный поток не течёт с «севера» на «юг» полюсов или каким-либо другим образом, поскольку является статической областью, окружающей магнит, где отмечается действие магнитной силы.

Другими словами, поток не течёт и не движется в принципе, а попросту существует, будучи не подверженным влиянию гравитации. Следующие важные факты магнетизма сопровождают построение силовых линий:

Силы магнетизма притягивают и отталкивают подобно электрическим силам, поэтому сближение двух силовых линий (взаимодействие между двумя полями) вызывает одно из двух явлений магнетизма:

Этот эффект легко запоминается благодаря известному выражению «противоположности притягиваются». Это взаимодействие магнитных полей, показывающие силовые линии окружающие магнит, легко продемонстрировать, используя железные наполнители. Влияние на магнитные поля различных комбинаций полюсов, когда одинаковые полюсы отталкиваются и в отличие от полюсов притягиваются, показано на картинке выше.

Магнитное поле одноименных и разноименных полюсов

Анализ линий магнитного поля с помощью компаса позволяет видеть, что созданием силовых линий придаётся определённый полюс на каждом конце магнита. Эффект магнетизма может быть нарушен нагреванием или ударом магнитного материала, но магнетизм невозможно уничтожить или изолировать, простым разделением магнита на две части.

Поэтому, если используя обычный стержневой магнит, разбить тело этого объекта на две части, двух половинок одного магнита получить не удастся. Вместо этого каждая часть слома образует полноценный магнит, наделённый «северным» и «южным» полюсами.

Продолжением разделения пополам других полученных частей приведёт к тому же результату. Независимо от того, насколько маленькими становятся кусочки магнита, у каждого кусочка будет формироваться «северный» и «южный» полюс, соответственно.

Принцип определения величины магнетизма

Как отмечалось ранее, силовые линии (магнитный поток) магнитного материала обозначается греческим символом «Фи» (φ). Под единицей измерения потока используется Вебер (латинское обозначение Wb, русское – Вб). Число силовых линий в пределах данной единичной области называется «плотностью потока».

Поскольку магнитный поток измеряется в Веберах, а площадь в метрах квадратных, следовательно, плотность потока измеряется отношением Вб / S и обозначается латинским символом — B.

Однако когда речь идет о магнетизме, плотность потока задается в единицах Тесла, поэтому один Вб / S равен одному Тесла (1Вб / 1м 2 = 1T). Плотность потока пропорциональна силовым линиям и обратно пропорциональна площади. Отсюда плотность магнитного потока определяется как:

B = φ / S

graficheskaya karta geforce 220 220ipple iphone 220 220hlado obogrev avto 220 220

Магнетизм + пример определения силы магнитного поля

Количественный показатель магнитного потока, присутствующего в круглом магнитном стержне, равен 0,06 Вб. Какая плотность магнитного потока, если диаметр стержня магнита равен 24 см? Решение:

Сначала определяется площадь поперечного сечения стержня (в м 2 ):

S = π * R 2 (3.14 * 0.12 2 ) = 0.045

Далее рассчитывается плотность магнитного потока (в Тесла):

B = φ / S = 0. 06 / 0.045 = 1.33

Если применительно к магнетизму электрических цепей 1Т — это плотность магнитного поля, проводник, несущий ток 1А под прямым углом к магнитному полю, испытывает нагрузку магнитной силы в один ньютон на метр.

КРАТКИЙ БРИФИНГ

Источник

Adblock
detector