энергия диполя во внешнем поле

men 827301 1920 Отделка

3.2. Электрический диполь

Чтобы понять механизм поведения диэлектриков в поле на микроскопическом уровне, нам надо сначала объяснить, как может электрически нейтральная система реагировать на внешнее электрическое поле. Простейший случай — полное отсутствие зарядов — нас не интересует. Мы знаем наверняка, что в диэлектрике имеются электрические заряды — в составе атомов, молекул, ионов кристаллической решетки и т. д. Поэтому мы рассмотрим следующую по простоте конструкции электронейтральную систему — два равных по величине и противоположных по знаку точечных заряда +q и –q, находящихся на расстоянии l друг от друга. Такая система называется электрическим диполем.

Электрический диполь — это система, состоящая из двух точечных равных по величине и противоположных по знаку зарядов, находящихся на расстоянии l друг от друга (рис. 3.6).

42clip image001

Рис. 3.6. Электрический диполь

Линии напряженности электрического поля и эквипотенциальные поверхности электрического диполя выглядят следующим образом (рис. 3.7, 3.8, 3.9)

000106

Рис. 3.7. Линии напряженности электрического поля электрического диполя

000107

Рис. 3.8. Эквипотенциальные поверхности электрического диполя

000108

Рис. 3.9. Линии напряженности электрического поля и эквипотенциальные поверхности

Основной характеристикой диполя является электрический дипольный момент. Введем вектор l, направленный от отрицательного заряда (–q) к положительному (+q), тогда вектор р, называемый электрическим моментом диполя или просто дипольным моментом, определяется как

000109

Рассмотрим поведение «жесткого» диполя — то есть расстояние 688clip image001которого не меняется — во внешнем поле Е (рис. 3.10).

000469

Рис. 3.10. Силы, действующие на электрический диполь, помещенный во внешнее поле

Пусть направление дипольного момента составляет с вектором Е угол 73clip image002. На положительный заряд диполя действует сила, совпадающая по направлению с Е и равная F1 = +qE, а на отрицательный — противоположно направленная и равная F2 = –qE. Вращающий момент этой пары сил равен

689clip image001

Так как ql = р, то М = рЕ sin 73clip image002или в векторных обозначениях

690clip image001

(Напомним, что символ

691clip image001

означает векторное произведение векторов а и b.) Таким образом, при неизменном дипольном моменте молекулы (692clip image001) механический момент, действующий на нее, пропорционален напряженности Е внешнего электрического поля и зависит от угла между векторами р и E.

Под действием момента сил М диполь поворачивается, при этом совершается работа

693clip image001

которая идет на увеличение его потенциальной энергии. Отсюда получаем потенциальную энергию диполя в электрическом поле

694clip image001

695clip image001

000111

если положить const = 0.

Из рисунка видно, что внешнее электрическое поле стремится повернуть диполь таким образом, чтобы вектор его электрического момента р совпал по направлению с вектором Е. В этом случае 698clip image001, а, следовательно, и М = 0. С другой стороны, при 698clip image001потенциальная энергия диполя во внешнем поле принимает минимальное значение 699clip image001, что соответствует положению устойчивого равновесия. При отклонении диполя от этого положения снова возникает механический момент, который возвращает диполь в первоначальное положение. Другое положение равновесия, когда дипольный момент направлен против поля 700clip image001является неустойчивым. Потенциальная энергия в этом случае принимает максимальное значение 701clip image001и при небольших отклонениях от такого положения возникающие силы не возвращают диполь назад, а еще больше отклоняют его.

На рис. 3.11 показан опыт, иллюстрирующий возникновение момента электрических сил, действующих на диэлектрик в электрическом поле. На удлиненный диэлектрический образец, расположенный под некоторым углом к силовым линиям электростатического поля, действует момент сил, стремящийся развернуть этот образец вдоль поля. Диэлектрическая палочка, подвешенная за середину внутри плоского конденсатора, разворачивается перпендикулярно его пластинам после подачи на них высокого напряжения от электростатической машины. Появление вращающего момента обусловлено взаимодействием поляризовавшейся палочки с электрическим полем конденсатора.

000112

Рис. 3.11. Момент электрических сил, действующих на диэлектрик в электрическом поле

В случае неоднородного поля на рассматриваемый диполь будет действовать еще и равнодействующая сила Fpaвн, стремящаяся его сдвинуть. Мы рассмотрим здесь частный случай. Направим ось х вдоль поля Е. Пусть диполь под действием поля уже повернулся вдоль силовой линии, так что отрицательный заряд находится в точке с координатой x, а положительный заряд расположен в точке с координатой х + l. Представим себе, что величина напряженности поля зависит от координаты х. Тогда равнодействующая сила Fpaвн равна

702clip image001

Такой же результат может быть получен из общего соотношения

703clip image001

где энергия П определена в (3.8). Если Е увеличивается с ростом x, то

704clip image001

и проекция 705clip image001равнодействующей силы положительна. Это значит, что она стремиться втянуть диполь в область, где напряженность поля больше. Этим объясняется известный эффект, когда нейтральные кусочки бумаги притягиваются к наэлектризованной расческе. В плоском конденсаторе с однородным полем они остались бы неподвижными.

Рассмотрим несколько опытов, иллюстрирующих возникновение силы, действующей на диэлектрик, помещенный в неоднородное электрическое поле.

На рис. 3.12 показано втягивание диэлектрика в пространство между обкладками плоского конденсатора. В неоднородном электростатическом поле на диэлектрик действуют силы, втягивающие его в область более сильного поля.

000113

Рис. 3.12. Втягивание жидкого диэлектрика в плоский конденсатор

Это демонстрируется при помощи прозрачного сосуда, в который помещен плоский конденсатор, и налито некоторое количество жидкого диэлектрика — керосина (рис.3.13). Конденсатор присоединен к высоковольтному источнику питания — электростатической машине. При ее работе на нижнем краю конденсатора, в области неоднородного поля, на керосин действует сила, втягивающая его в пространство между пластинами. Поэтому уровень керосина внутри конденсатора устанавливается выше, чем снаружи. После выключения поля уровень керосина между пластинами падает до его уровня в сосуде.

000114

Рис. 3.13. Втягивание керосина в пространство между обкладками плоского конденсатора

В реальных веществах нечасто встречаются диполи, образованные только двумя зарядами. Обычно мы имеем дело с более сложными системами. Но понятие электрического дипольного момента применимо и к системам со многими зарядами. В этом случае дипольный момент определяется как

706clip image001

где 26clip image012, 34clip image013— величина заряда с номером i и радиус-вектор, определяющий его местоположение, соответственно. В случае двух зарядов 707clip image001мы приходим к прежнему выражению

25clip image014

Пусть наша система зарядов электрически нейтральна. В ней есть положительные заряды, величины которых и местоположения мы обозначим индексом «+». Индексом «–» мы снабдим абсолютные величины отрицательных зарядов и их радиус-векторы. Тогда выражение (3.10) может быть записано в виде

708clip image001

В (3.11) в первом слагаемом суммирование ведется по всем положительным зарядам, а во втором — по всем отрицательным зарядам системы.

Электрическая нейтральность системы означает равенство полного положительного заряда и суммы абсолютных величин всех отрицательных зарядов

709clip image001

Введем теперь понятие «центр зарядов» — положительных R + и отрицательных R

710clip image001

Выражения (3.13) аналогичны формулам для центра масс в механике, и потому мы назвали их центрами положительных и отрицательных зарядов, соответственно. С этими обозначениями и с учетом соотношения (3.12) мы записываем электрический дипольный момент (3.11) системы зарядов в виде

000115

где l-вектор, проведенный из центра отрицательных зарядов в центр положительных зарядов. Смысл нашего упражнения заключается в демонстрации, что любую электрически нейтральную систему зарядов можно представить как некий эквивалентный диполь.

Дополнительная информация

Источник

ЛЕКЦИЯ №8

Плохо заряду, когда он один.
Горе одному, один не воин.
Каждый дюжий ему господин,
И даже слабые, если двое.
(почти В.В.Маяковский)

1. Понятие о диполе.

Простейшей системой точечных зарядов является диполь (от лат. «двойной полюс»).

image001

zapomni def: Диполем называются два равных по величине, но противоположных по знаку точечных заряда, сдвинутых друг относительно друга на некоторое расстояние (см. рис.8.1).

zapomni def: Электрическим дипольным моментом называется величина, определяемая как image003(8.1)

Следует отметить, что дипольный момент не зависит от положения диполя в пространстве, так как вектор image005остается неизменным при любом выборе тела отсчета. Поэтому без ограничения общности в дальнейшем начало координат будем выбирать в центре диполя, если другое не оговорено особо.

2. Поле диполя в дальней зоне.

image006Очевидно, что напряженность в произвольной точке пространства М (см. рис.8.2) по принципу суперпозиции равна

image008(8.2)

где image010, а image012. После подстановки имеем

image014(8.3)

image022

Аналогично поступаем со вторым знаменателем. При приведении к общему знаменателю в (8.3) ряд слагаемых в числителе взаимно уничтожаются, а в знаменателе пренебрегаем квадратичным членом. В итоге получаем

image024(8.5)

Окончательно, учитывая, что image026, имеем

image028(8.6)

Это напряженность электрического поля диполя в дальней зоне, т.е. в точках пространства, где r>>l.

3. Частные случаи.

Легко понять, что при выборе осей так, как показано на рис.8.3, проекции напряженности и ее модуль равны соответственно

image030 image031
image033
image035

Видно, что напряженность убывает по закону кубов (а не квадратов).

точка угол напряженность
A,
C
a =0;
a=p
image037
B,
D
a=p/2 image039

В характерных точках, указанных на рисунке 5.3 выражения для напряженности даны в таблице.

image040

Легко определить угол между напряженностью и радиус вектором (см. рис.8.4)

image042

Используя тригонометрическую формулу image044, получаем

image046(8.14)

причем смысл имеет верхний знак.

4. Диполь во внешнем однородном поле.

image047

На диполь действует пара сил, сумма которых равна 0, то есть центр диполя остается на месте или движется равномерно и прямолинейно (вспомните механику!). Однако момент этой пары сил (рис.8.5) отличен от нуля

image049(8.15)

и стремится развернуть диполь по полю, причем после поворота диполь окажется в положении устойчивого равновесия. Диполь может быть приведен в равновесие и поворотом против часовой стрелки (см. рис.8.5), но в этом случае равновесие будет неустойчивым.

5. Векторное произведение (математическое отступление).

Опыт показывает, что студентам время от времени нужно напоминать, что такое векторное произведение двух векторов.

Правило правого винта заключается в следующем: винт с правой (обычной) резьбой нужно вращать от первого вектора ко второму. Тогда поступательное движение винта покажет направление векторного произведения. Полезно запомнить, что векторное произведение всегда перпендикулярно плоскости, образованной векторами – сомножителями. Модуль векторного произведения численно равен площади параллелограмма, построенного на векторах-сомножителях. Направление векторного произведения зависит от порядка сомножителей.

6. Диполь во внешнем неоднородном поле.

Пусть теперь поле неоднородно в пространстве.

image059 image057

Если считать, что в области диполя поле меняется очень слабо, то формула для момента остается прежней (см.8.15), и диполь также стремится развернуться по полю (рис.8.6).

Не строго получим выражение для силы, действующей на диполь.

image061(8.17)

Опять будем считать, что диполь очень маленький (точечный), то есть заряды смещены друг относительно друга на бесконечно малый вектор image063. Это означает, что значения напряженности поля в точках нахождения зарядов бесконечно мало отличаются друг от друга, поэтому image065, где image067можно записать как полный дифференциал

image069

где image071— уже упоминавшийся ранее (см. лек.№7 п.16) набла-оператор (оператор Гамильтона). Обратите внимание на расстановку знаков. На вектор напряженности действует весь оператор, стоящий в скобках image073, а не только оператор image071, хотя бы потому, что никто не знает, что такое градиент векторного поля (математики такой операции еще не определили).

Таким образом, (8.17) принимает вид

image076(8.19)

Еще немного поиграем с формулами векторного анализа. Нам известно (а вам?!), что

image078(8.20)

Второе и четвертое слагаемые равны нулю, т.к. дипольный момент не зависит от координат, как это отмечалось в пункте 1. Третье слагаемое в электростатике также обращается в нуль по теореме о циркуляции (6.15). Тогда силу, действующую на диполь можно записать в виде

image080(8.21)

Вспомним, что в механике между силой и потенциальной энергией Wp есть связь image082. Тогда очевидно, что в электростатическом поле диполь обладает потенциальной энергией

image084(8.20)

Очевидно, что потенциальная энергия минимальна, если дипольный момент и поле сонаправлены, то есть, диполь развернут по полю.

Из (8.19) или (8.21) ясно, что диполь втягивается в область более сильного поля. Проиллюстрируем данный вывод на следующих примерах.

image085

Пусть диполь уже развернулся вдоль поля (см. рис.8.7), то есть image087. Тогда

image089,

image091Fx image092

Другой пример: диполь симметрично расположен относительно поля (рис.8.8), image093. Поле тоже считаем симметричным относительно оси OY. Тогда

image095и image097

а image099так как image101.

· Диполь разворачивается вдоль поля;

· Диполь втягивается в область более сильного поля;

· Электрическое поле может растянуть диполь. (Мы рассматривали только жесткий диполь).

7. Общий вид поля диполя.

image102

Легко показать, что в полярных координатах уравнение силовой линии имеет вид (рис.8.9)

Здесь первую полярную координату r обозначим r, чтобы не путать с плотностью заряда, а вторую полярную координату обозначим a , чтобы не путать с потенциалом.

image103

В самом деле, если речь идет о декартовых координатах, то уравнение линии напряженности строится из следующих соображений

image105

Аналогично поступаем и в полярных координатах

image107

Используя формулу (8.14), получаем

image109.

После чего переменные легко разделяются

image111.

Данное дифференциальное уравнение интегрируется достаточно просто

Из него и следует формула (8.26).

Вид поля диполя в дальней зоне представлен на рис.8.10.

8. Потенциал поля диполя.

Поступим аналогично пункту 2.

image113 image114

после разложения знаменателей в ряд и приведения подобных слагаемых получаем

image116(8.34)

Очевидно, уравнение эквипотенциальной поверхности в полярных координатах имеет вид

image118

Картина эквипотенциальных линий приведена на рис.8.11. Полезно сравнить с силовыми линиями диполя (рис.8.10). Легко написать

image120 image122

откуда вновь можно получить (8.26).

9. Дипольный момент системы точечных зарядов.

Квазинейтральная система точечных зарядов занимающая небольшой объем ведет себя как точечный диполь. Действительно, можно разделить все заряды системы попарно, т.е. получить систему диполей, а затем все дипольные моменты перенести в одну точку и сложить. Необходимо только, чтобы размеры системы были достаточно малы. Без аккуратного доказательства примем, что дипольный момент системы зарядов

image124

Очевидно, что дипольный момент заряженного тела вычисляется по формуле

image127 ris 08 12

Простой пример: два заряда (рис.8.12)

image129,

то есть получили результат, известный ранее (8.1).

10. Почему так подробно о диполе.

Столь большое внимание, которое было уделено понятию и свойствам электрического диполя, связано с тем, диполь является простейшей моделью полярных молекул, которые мы будем рассматривать при изучении поля в веществе. Необходимо отметить, что дипольный электрический момент является основной характеристикой электрически нейтральных систем зарядов, и поэтому играет большую роль в различных вопросах теории молекул. Если же в системе столь симметричное расположение зарядов, что и дипольный момент равен нулю, то в дело вступает квадрупольный момент и так далее.

Кроме того, электрический диполь – это одно из важных понятий в теории излучения электромагнитных волн. Переменный во времени электрический диполь является наиболее простой (и исторически первой) моделью излучающей системы, с которой подробнее познакомимся в лекции №35.

Источник