электростатическое поле в диэлектрической среде
Электростатическое поле в диэлектрической среде
Диэлектриками называются вещества, которые при обычных условиях практически не проводят электрический ток.
Диэлектрик, как и всякое другое вещество, состоит из атомов или молекул, каждая из которых в целом электрически нейтральна.
Различают три типа диэлектриков.
1)Диэлектрики с неполярными молекулами, симметричные молекулы которых в отсутствие внешнего поля имеют нулевой дипольный момент (например, N2,Н2, 02, С02).
2)Диэлектрики с полярными молекулами, молекулы которых вследствие асимметрии имеют ненулевой дипольный момент (например, Н20, NH3, S02, СО).
3)Ионные диэлектрики (например NaCl, КС1). Ионные кристаллы представляют собой пространственные решетки с правильным чередованием ионов разных знаков.
Внесение диэлектриков во внешнее электрическое поле приводит к возникновению отличного от нуля результирующего электрического момента диэлектрика.
Поляризацией диэлектрика называется процесс ориентации диполей или появления под воздействием электрического поля ориентированных по полю диполей.
Соответственно трем видам диэлектриков различают три вида поляризации.
индуцированный дипольный момент у атомов или молекул диэлектрика.
15. Поляризованность.
Поместим пластину из однородного диэлектрика во внешнее электрическое поле созданное двумя бесконечными параллельными разноименно заряженными плоскостями.
Во внешнем электрическом поле диэлектрик объемом V поляризуется, т.е. приобретает дипольный момент , где
— дипольный момент одной молекулы.
В случае изотропного диэлектрика поляризованность (для большинства диэлектриков за исключением сегнетоэлектриков) линейно зависит от напряженности внешнего поля
16.Диэлектрическая проницаемость среды.
Вследствие поляризации на поверхности диэлектрика появляются некомпенсированные заряды, которые называются связанными (в отличие от свободных зарядов, которые создают внешнее поле).
Поле
внутри диэлектрика, создаваемое связанными зарядами, направлено против внешнего поля
создаваемого свободными зарядами.
Результирующее поле внутри диэлектрика
В нашем примере поле, создаваемое двумя бесконечно заряженными плоскостями с поверхностной плотностью зарядов . Поэтому
Полный дипольный момент диэлектрической пластинки с толщиной d и площадью грани S равен pv = PV = PSd, с другой стороны .Отсюда
. Следовательно,
Откуда напряженность результирующего поля внутри диэлектрика равна
Безразмерная величина называется диэлектрической проницаемостью среды. Она характеризует способность диэлектриков поляризоваться в электрическом поле и показывает во сколько раз поле ослабляется диэлектриком.
Напряженность электростатического поля зависит от свойств среды (от s). Кроме того, вектор напряженности Е, переходя через границу диэлектриков, претерпевает скачкообразное изменение, поэтому для описания (непрерывного) электрического поля системы зарядов с учетом поляризационных свойств диэлектриков вводится вектор электрического смещения (электрической индукции), который для изотропной среды записывается как
Вектор D описывает электростатическое поле, создаваемое свободными зарядами (т.е. в вакууме), но при таком их распределении в пространстве, какое имеется при наличии диэлектрика.
Аналогично линиям напряженности, можно ввести линии электрического смещения. Через области поля, где находятся связанные заряды, линии вектора D проходят не прерываясь.
Теорема Гаусса для электростатического поля в диэлектрике: поток вектора смещения электростатического поля в диэлектрике сквозь произвольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности свободных электрических зарядов
Для непрерывного распределения заряда в пространстве с объемной плотностью
Другая форма записи этого соотношения с учетом определения дивергенции вектора (стр. 1-31)
Условия на границе раздела двух диэлектрических сред
При отсутствии на границе двух диэлектриков свободных зарядов, циркуляция вектора
по контуру
.
Поэтому
Учитывая , получим
По теореме Гаусса поток вектора через цилиндр ничтожно малой высоты равен нулю (нет свободных зарядов)
, поэтому
Таким образом, при переходе через границу раздела двух диэлектрических сред тангенциальная составляющая вектора
и нормальная составляющая вектора
изменяются непрерывно (не претерпевают скачка), а нормальная составляющая вектора
и тангенциальная составляющая вектора
претерпевают скачок.
Сегнетоэлектриками называются кристаллические диэлектрики, у которых в отсутствие внешнего электрического поля возникает самопроизвольная ориентация дипольных электрических моментов составляющих его частиц.
Примеры, сегнетова соль NaKC4Н4O6; титанат бария ВаТiO3
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Источник
Диэлектрики в электрическом поле.
Диэлектрики (или изоляторы) — вещества, относительно плохо проводящие электрический ток (по сравнению с проводниками).
Термин «диэлектрик» (от греч. dia — через и англ. electric — электрический) был введен М. Фарадеем для обозначения веществ, через которые передаются электромагнитные взаимодействия.
В диэлектриках все электроны связаны, т. е. принадлежат отдельным атомам, и электрическое поле не отрывает их, а лишь слегка смещает, т. е. поляризует. Поэтому внутри диэлектрика может существовать электрическое поле, диэлектрик оказывает на электрическое поле определенное влияние.
Диэлектрики делятся на полярные и неполярные.
Полярные диэлектрики состоят из молекул, в которых центры распределения положительных и отрицательных зарядов не совпадают. Такие молекулы можно представить в виде двух одинаковых по модулю разноименных точечных зарядов, находящихся на некотором расстоянии друг от друга, называемых диполем.
Неполярные диэлектрики состоят из атомов и молекул, у которых центры распределения положительных и отрицательных зарядов совпадают.
Помещение полярного диэлектрика в электростатическое поле (например, между двумя заряженными пластинами) приводит к развороту и смещению до этого хаотически ориентированных диполей вдоль поля.
Разворот происходит под действием пары сил, приложенных со стороны поля к двум зарядам диполя.
Смещение диполей называется поляризацией. Однако из-за теплового движения происходит лишь частичная поляризация. Внутри диэлектрика положительные и отрицательные заряды диполей компенсируют друг друга, а на поверхности диэлектрика появляется связанный заряд: отрицательный со стороны положительно заряженной пластины, и наоборот.
Неполярный диэлектрик в электрическом поле также поляризуется. Под действием электрического поля положительные и отрицательные заряды в молекуле смещаются в противоположные стороны, так что центры распределения зарядов смещаются, как у полярных молекул. Ось наведенного полем диполя ориентирована вдоль поля. На поверхностях диэлектрика, примыкающих к заряженным пластинам, появляются связанные заряды.
Поляризованный диэлектрик сам создает электрическое поле .
Это поле ослабляет внутри диэлектрика внешнее электрическое поле . Степень этого ослабления зависит от свойств диэлектрика. Уменьшение напряженности электростатического поля в веществе по сравнению с полем в вакууме характеризуется относительной диэлектрической проницаемостью среды.
Относительная диэлектрическая проницаемость среды ɛ — это физическая величина, показывающая, во сколько раз модуль напряженности электростатического поля E внутри однородного диэлектрика меньше модуля напряженности поля E0 в вакууме:
В соответствии с этим сила взаимодействия зарядов в среде в ɛ раз меньше, чем в вакууме:
.
Источник
ЭЛЕКТРОСТАТИЧЕСКОЕ ПОЛЕ В ДИЭЛЕКТРИКЕ
Диэлектрики в электростатическом поле
Известно, что диэлектриками называются вещества, которые при обычных условиях практически не проводят электрический ток. В данной подтеме ознакомимся со свойствами диэлектрика.
Как и всякое вещество, диэлектрик состоит из молекул (атомов). Все молекулы диэлектрика электрически нейтральны: суммарный заряд электронов и атомных ядер, входящих в состав молекулы, равен нулю. Однако молекулы обладают электрическими свойствами.
В первом приближении молекулу диэлектрика можно рассматривать как электрический диполь с электрическим моментом
где q — суммарный положительный заряд всех атомных ядер в молекуле; / — вектор, проведенный из «центра тяжести» электронов в молекуле в «центр тяжести» положительных зарядов атомных ядер.
Различают три типа диэлектриков: неполярные, полярные и ионные.
Неполярные диэлектрики — диэлектрики с неполярными молекулами, в которых в отсутствие внешнего электрического поля «центры тяжести» положительных и отрицательных зарядов совпадают (/ =0) и, следовательно, дипольные моменты молекул равны нулю. Таковы, например, молекулы Н2, 02, N2 и др.
Полярные диэлектрики — диэлектрики с полярными молекулами, которые имеют электроны, расположенные несимметрично относительно атомных ядер, и поэтому они обладают дипольным электрическим моментом (например, молекулы Н20, спиртов, NH3 и т.д.). Если полярный диэлектрик не находится во внешнем электрическом поле, то в результате теплового движения молекул векторы их дипольных электрических моментов ориентированы беспорядочно. Следовательно, сумма дипольных моментов всех молекул, содержащихся в любом физически бесконечно малом объеме диэлектрика, равна нулю.
Ионные диэлектрики — диэлектрики, имеющие ионную кристаллическую решетку и представляющие собой пространственные решетки с правильным чередованием ионов разных знаков (например, молекулы КС1).
Поляризацией диэлектрика называется процесс, в результате которого физический объект (атом, молекула, твердое тело и др.) приобретает электрический дипольный момент.
Соответственно различают три вида поляризации диэлектриков: электронную, ориентационную и ионную.
В случае электронной, или деформационной, поляризации диэлектрика с неполярными молекулами во внешнем электрическом поле электронные оболочки атомов и молекул деформируются: положительные заряды смещаются по полю, отрицательные заряды — против поля. Поэтому неполярная молекула приобретает индуцированный (наведенный) дипольный электрический момент, пропорциональный напряженности внешнего поля Е (рис. 13.1, а). Неполярная молекула подобна упругому диполю, длина плеча которого пропорциональна напряженности внешнего электрического поля.
Ориентационная, или дипольная, поляризация диэлектрика с полярными молекулами — ориентация имеющихся дипольных моментов молекул по полю (рис. 13.1, б). Во внешнем электрическом поле полярная молекула деформируется. Однако в первом приближении этой деформацией можно пренебречь. Можно считать, что полярная молекула по своим электрическим свойствам подобна жесткому диполю, модуль электрического момента которого постоянен.
Ионная поляризация диэлектрика с ионными кристаллическими решетками — смещение подрешетки положительных ионов вдоль поля, а отрицательных ионов против поля, что приводит к возникновению дипольных моментов.
Рис. 13.1. Молекулярные представления о диэлектриках: а — электронная поляризация неполярного диэлектрика; б — ориентационная поляризация полярного диэлектрика
Источник
Диэлектрики в электрическом поле
Идеальный диэлектрик не содержит в себе зарядов, способных к перемещению на значительные расстояния, то есть свободных зарядов в идеальном диэлектрике нет. Однако, помещенный во внешнее электростатическое поле, диэлектрик реагирует на него. Происходит поляризация диэлектрика, то есть под действием электрического поля, заряды в диэлектрике смещаются. Это свойство, способность диэлектрика к поляризации, является главным свойством диэлектриков.
Так, поляризуемость диэлектриков включает три составляющие поляризуемости:
При поляризации происходит смещение зарядов под действием электростатического поля. В итоге, каждый атом или каждая молекула создает электрический момент P.
Заряды диполей внутри диэлектрика взаимно компенсируют друг друга, однако на наружных поверхностях, которые прилегают к электродам, служащим источником электрического поля, появляются поверхностно связанные заряды, имеющие противоположный заряду соответствующего электрода знак.
Электростатическое поле связанных зарядов E’ всегда направлено противоположно внешнему электростатическому полю E0. Получается, что внутри диэлектрика есть электрическое поле, равное E = E0 – E’.
Если тело из диэлектрика в форме параллелепипеда помещено в электростатическое поле напряженностью E0, то его электрический момент может быть вычислен по формуле: P = qL = σ’SL = σ’SlCosφ, где σ’ – поверхностная плотность связанных зарядов, а φ — угол между поверхностью грани площадью S и нормалью к ней.
Подставив теперь объем параллелепипеда V = SlCos φ, легко вывести, что поверхностная плотность поляризационных зарядов численно равна нормальной составляющей вектора поляризации в данной точке поверхности. Логическим следствием будет то, что индуцированное в диэлектрике электростатическое поле E’ влияет лишь на нормальную составляющую напряженности приложенного внешнего электростатического поля E.
Расписав электрический момент одной молекулы через напряженность, поляризуемость и диэлектрическую проницаемость вакуума, вектор поляризации можно записать как:
Таким образом, у результирующего электростатического поля E изменяется, в сравнении с E0, лишь нормальная компонента. Тангенциальная же компонента поля (направленная по касательной к поверхности) не изменяется. В результате, в векторной форме значение напряженности результирующего поля можно записать:
Значение напряженности результирующего электростатического поля в диэлектрике равно напряженности внешнего электростатического поля, деленной на диэлектрическую проницаемость среды ε:
Диэлектрическая проницаемость среды ε = 1 + χ является главной характеристикой диэлектрика, и свидетельствует о его электрических свойствах. Физический смысл данной характеристики заключается в том, что он показывает, во сколько раз напряженность E поля внутри данной диэлектрической среды меньше, чем напряженность E0 в вакууме:
При переходе из одной среды в другую, напряженность электростатического поля меняется скачком, и график зависимости напряженности поля от радиуса диэлектрического шара, находящегося в среде с диэлектрической проницаемостью ε2, отличной от диэлектрической проницаемости шара ε1, отражает это:
1920 год явился годом открытия явления спонтанной поляризации. Группу веществ, подверженной этому явлению, назвали сегнетоэлектриками или ферроэлектриками. Явление проявляется благодаря тому, что для сегнетоэлектриков характерна анизотропия свойств, при которой сегнетоэлектрические проявления можно наблюдать лишь вдоль одной из осей кристалла. У изотропных же диэлектриков все молекулы поляризуются одинаково. У анизотропных — в разных направлениях векторы поляризации направлением отличаются.
Сегнетоэлектрики отличаются высокими значениями диэлектрической проницаемости ε в определенном интервале температур:
При этом значение ε зависит как от приложенного к образцу внешнего электростатического поля E, так и от предыстории образца. Диэлектрическая проницаемость и электрический момент здесь нелинейно зависят от напряженности E, поэтому сегнетоэлектрики относятся к нелинейным диэлектрикам.
Поскольку диэлектрики поляризуются нелинейно, здесь имеет место диэлектрический гистерезис. В точке «а» на графике происходит насыщение. Ec – коэрцитивная сила, Pc – остаточная поляризация. Кривая поляризации называется петлей гистерезиса.
Из-за стремления к минимуму потенциальной энергии, а также из-за дефектов, свойственных их структуре, сегнетоэлектрики разбиты внутри на домены. Домены имеют различное направление поляризации, и в отсутствие внешнего поля их суммарный дипольный момент почти равен нулю.
Под действием же внешнего поля E, границы доменов смещаются, и часть доменов, поляризованных против поля помогает поляризации доменов по направлению поля E.
Ярким примером такой структуры является тетрагональная модификация BaTiO3.
В достаточно сильном поле E кристалл становится однодоменным, а после выключения внешнего поля, поляризация остается (это и есть остаточная поляризация Pc).
Для уравнивания объемов доменов противоположного знака, необходимо приложить к образцу внешнее электростатическое поле Eс, коэрцитивное поле, в противоположном направлении.
Встречаются среди диэлектриков и электрические аналоги постоянных магнитов — электреты. Это такие особые диэлектрики, которые способны сохранять поляризацию продолжительно даже после отключения внешнего электрического поля.
Есть в природе диэлектрики, поляризуемые при механическом воздействии на них. От механической деформации кристалл поляризуется. Это явление известно как пьезоэлектрический эффект. Он был открыт в 1880 году братьями Жаком и Пьером Кюри.
Суть в следующем. На наложенных на грани кристалла пьезоэлектрика металлических электродах, возникнет разность потенциалов в момент осуществления деформации кристалла. Если электроды будут замкнуты проводником, то в цепи возникнет электрический ток.
Обратный пьезоэлектрический эффект также возможен — поляризация кристалла приводит к его деформации. При подаче напряжения на электроды, приложенные к пьезокристаллу, возникнет механическая деформация кристалла, она будет пропорциональна напряженности приложенного поля E0. На данный момент науке известно более 1800 видов пьезоэлектриков. Все сегнетоэлектрики в полярной фазе проявляют пьезоэлектрические свойства.
Некоторые диэлектрические кристаллы поляризуются при нагревании или при охлаждении, это явление известно как пироэлектричество. Например, один конец пироэлектрического образца при нагревании заряжается отрицательно, а другой — положительно. А при охлаждении, тот конец, который стал отрицательно заряженным при нагревании, станет положительно заряженным при охлаждении. Очевидно, это явление связано с изменением исходной поляризации вещества с изменением его температуры.
Каждый пироэлектрик обладает пьезоэлектрическими свойствами, но далеко не каждый пьезоэлектрик является пироэлектриком. Некоторые из пироэлектриков обладают сегнетоэлектрическими свойствами, то есть способны к спонтанной поляризации.
На границе двух сред с различными значениями диэлектрической проницаемости, напряженность электростатического поля E изменяется скачком в месте резкого изменения ε.
Для упрощения расчетов в электростатике, был введен вектор электрического смещения или электрическая индукции D.
Поскольку E1ε1 = E2ε2, то и E1ε1ε0 = E2ε2ε0, значит:
То есть, при переходе из одной среды в другую остается неизменным вектор электрического смещения, то есть электрическая индукция. Это наглядно иллюстрирует рисунок:
Для точечного заряда в вакууме вектор электрического смещения равен:
Подобно магнитному потоку для магнитных полей, в электростатике используется поток вектора электрического смещения.
Так, для однородного электростатического поля, при пересечении линиями вектора электрического смещения D площадки площадью S под углом α к нормали, можно записать:
Теорема Остроградского—Гаусса для вектора E позволяет получить соответствующую теорему для вектора D.
Итак, теорема Остроградского-Гаусса для вектора электрического смещения D звучит так:
Поток вектора D через любую замкнутую поверхность определяется только свободными зарядами, а не всеми зарядами внутри объема, ограниченного данной поверхностью.
Для примера можно рассмотреть задачу с двумя бесконечно протяженными диэлектриками с различными ε, и имеющими границу раздела двух сред, пронизываемыми внешним полем E.
Если ε2 > ε1, то с учетом того, что E1n/E2n = ε2/ε1, и E1т = E2т, поскольку изменяется только нормальная составляющая вектора E, меняется лишь направление вектора E.
Мы получили закон преломления напряженности вектора E.
Закон преломления для вектора D аналогичен, поскольку D = εε0E, и это иллюстрирует рисунок:
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Источник