электростатическое поле напряженность электростатического поля

Электростатическое поле напряженность электростатического поля

tr c w

Почему заряды взаимодействуют? Над этим вопросом ученые работали долгое время, имела место борьба двух теорий: теория дальнодействия – Ньютон, Ампер и теория близкодействия – Фарадей, Максвелл и т.д. Для электростатического поля справедливы обе эти теории.

Для понимания происхождения и передачи сил, действующих между зарядами, необходимо допустить наличие между зарядами какого-либо физического агента, обуславливающего это взаимодействие. Этим агентом является электрическое поле.

Вокруг заряда всегда есть электрическое поле, основное свойство которого заключается в том, что на всякий другой заряд, помещенный в это поле, действует сила.

du 080i1

Электрические и магнитные поля – частный случай более общего – электромагнитного поля (ЭМП). Они могут порождать друг друга, превращаться друг в друга. Если заряды не движутся, то магнитное поле не возникает.

ЭМП – не абстракция, а объективная реальность – форма существования материи, обладающая определенными физическими свойствами, которые мы можем измерить.

Не существует статических электрических полей, не связанных с зарядами, как не существует «голых», не окруженных полем зарядов.

Силовой характеристикой поля создаваемого зарядом q является отношение силы действующей на заряд к величине этого заряда называемое напряженностью электростатического поля, т.е.

Вектор напряженности электростатического поля равен силе, действующей в данной точке на помещенный в нее пробный единичный положительный заряд.

Направление вектора напряженности определяет направление силы, действующей на положительный заряд, помещенный в рассматриваемую точку поля.

Из формулы (1.3.1) следует что единица измерения напряженности электростатического поля – ньютон на кулон (Н/Кл).

1 Н/Кл – напряженность такого поля, которое на точечный заряд 1 Кл действует с силой в 1 Н.

В СИ 025размерность напряженности 026.

Источник

Электростатическое поле напряженность электростатического поля

152 дн. с момента
до конца учебного года

92

Электростатическое поле и его характеристики

Электростатическое поле существующий вокруг неподвижный заряженных тел, действует на заряд с некоторой силой, вблизи заряда – сильнее.
Электростатическое поле не изменяется во времени.
Силовой характеристикой электрического поля является напряженность1

Напряженностью электрического поля в данной точке называется векторная физическая величина, численно равная силе, действующей на единичный положительный заряд, помещенный в данную точку поля.

2

3

4

7

Силовыми линиями (линиями напряженности электрического поля) называют линии, касательные к которым в каждой точке поля совпадают с направлением вектора напряженности в данной точке.

Силовые линии начинаются на положительном заряде и заканчиваются на отрицательном ( Силовые линии электростатических полей точечных зарядов. ).

6

Густота линий напряженности характеризует напряженность поля (чем плотнее располагаются линии, тем поле сильнее).

Электростатическое поле точечного заряда неоднородно (ближе к заряду поле сильнее).

Силовые линии электростатических полей бесконечных равномерно заряженных плоскостей.
Электростатическое поле бесконечных равномерно заряженных плоскостей однородно. Электрическое поле, напряженность во всех точках которого одинакова, называется однородным.

Источник

Электростатический диполь. Электростатическое поле. Напряженность

Electric dipole. Electrostatic field strength

Электрическое поле, которое окружает заряд, это реальность, независящая от нашего желания что-либо изменить и как-то повлиять на это. Отсюда можно сделать вывод, что электрическое поле является одной из форм существования материи, так же как и вещество.

Электрическое поле зарядов, находящихся в состоянии покоя, называют электростатическим. Чтобы обнаружить электростатическое поле определенного заряда нужно внести в его поле другой заряд, на который будет действовать определенная сила в соответствии с законом Кулона. Однако без наличия второго заряда электростатическое поле первого заряда существует, но никак себя не проявляет.

Напряженностью Е характеризуют электростатическое поле. Напряженность в некоторой точке электрического поля – физическая величина, которая равна силе, действующей на помещенный в определенную точку поля единичный положительный покоящийся заряд, и направленная в сторону действия силы.

Если в электрическое поле, создаваемое зарядом q, внести «пробный» положительный точечный заряд qпр, то по закону Кулона на него будет действовать сила:

Force acting on a test positive point charge

Если в одну точку поля помещать различные пробные заряды q / пр, q // пр и так далее, то на каждый из них будут действовать различные силы, пропорциональные величине заряда. Отношение F/qпр для всех зарядов, вносимых в поле, будет идентичным, а также будет зависеть лишь от q и r, определяющих электрическое поле в данной точке. Данную величину можно выразить формулой:

Electric field strength

Если предположить, что qпр = 1, то E = F. Отсюда делаем вывод, что напряженность электрического поля является его силовой характеристикой. Из формулы (2) с учетом выражения кулоновской силы (1) следует:

The electric field strength with allowance for Coulomb forces and in vector form

Из формулы (2) видно, что за единицу напряженности принимается напряженность в определенной точке поля, где на единицу заряда будет действовать единица силы. Поэтому в системе СГС единицей напряженности является дин/СГСq, а в системе СИ будет Н/Кл. Соотношение между приведенными единицами называют абсолютной электростатической единицей напряженности (СГСЕ):

Absolute electrostatic tension unit

Вектор напряженности направлен от заряда вдоль радиуса при образующем поле положительном заряде q+, а при отрицательном – q – по направлению к заряду вдоль радиуса.

Если электрическое поле образовано несколькими зарядами, то силы, которые будут действовать на пробный заряд, складываются по правилу сложения векторов. Поэтому напряженность системы, состоящей из нескольких зарядов, в данной точке поля будет равна векторной сумме напряженностей каждого заряда в отдельности:

Principle of superposition

Данное явление носит название принцип суперпозиции (наложения) электрических полей.

Напряженность в любой точке электрического поля двух точечных зарядов – q2 и +q1 можно найти использовав принцип суперпозиции:

Determination of the electric field strength by the superposition principle

По правилу параллелограмма будет происходить сложение векторов Е1 и Е2. Направление результирующего вектора Е определяется построением, а его абсолютная величина может быть вычислена с использованием формулы ниже:

Absolute magnitude of the tension vector

Где α – угол между векторами Е1 и Е2.

Давайте рассмотрим электрическое поле, которое создает диполь. Электрический диполь – это система равных по величине (q = q1 = q2), но противоположных по знаку зарядов, расстояние между которыми очень мало, если сравнивать с расстоянием до рассматриваемых точек электрического поля.

Электрический дипольный момент p, являющийся основной характеристикой диполя и определяемый как вектор, направленный от отрицательного заряда к положительному, и равный произведению плеча диполя l на заряд q:

The electric dipole moment

Также вектором является плечо диполя l, направленным от отрицательного заряда к положительному, и определяет расстояние между зарядами. Линия, которая проходит через оба заряда, носит название – ось диполя.

Давайте определим напряженность электрического поля в точке, которая лежит на оси диполя по середине (рисунок ниже а)):

Determination of the electric dipole

The resultant electric field strength for two differently directed stress vectors

Где r – расстояние между точкой, которая лежит на оси диполя и в которой происходит определение напряженности, и средней точкой диполя.

В случае r>>l, величиной (l/2) в знаменателе можно пренебречь, тогда получим следующее соотношение:

The resulting strength of the electric field with two differently directed stress vectors simplifies the recording after neglecting the condition

Где p – момент электрический диполя.

Данная формула в системе СГС примет вид:

The resultant electric field strength for two differently directed stress vectors in the GHS system

Теперь нужно вычислить напряженность электрического поля в точке С (рисунок выше б)), лежащей на перпендикуляре, восстановленном из средней точки диполя.

Так как r1 = r2, то будет иметь место равенство:

The electric field strength at a point lying on a perpendicular

В точке С вектор результирующей напряженности по абсолютной величине будет равен:

At point C the vector of the resultant intensity in absolute value will be equal to

Так как r>>l, то можно считать r1 ≈ r, тогда представленную выше формулу можно записать в другом виде:

At point C the vector of the resultant intensity in absolute value is the simplified formula

Напряженность диполя в произвольной точке можно определить по формуле:

The dipole voltage at an arbitrary point of the formula

Где α – угол между плечом диполя l и радиус-вектором r, r – расстояние от точки, в которой определяется напряженность поля, до центра диполя, р – электрический момент диполя.

Пример

Determination of the electric field strength at a point

Необходимо определить напряженность электрического поля в точке А, которая расположена на перпендикуляре, восстановленном в центре отрезка, который соединяет заряды, на расстоянии h = 4 см от этого отрезка. Также нужно определить напряженность и в точке В, находящейся на середине отрезка, который соединяет заряды.

Решение

По принципу суперпозиции (наложением полей) определяется напряженность поля Е. Таким образом, векторной (геометрической) суммой определяется Е, создаваемых каждым зарядом в отдельности: Е = Е1 + Е2.

Напряженность электрического поля первого точечного заряда равна:

The field strength of the first and second point charges

Где q1 и q2 – заряды, образующие электрическое поле; r – расстояние от точки, в которой вычисляется напряженность, до заряда; ε0 – электрическая постоянная; ε – относительная диэлектрическая проницаемость среды.

Для определения напряженности в точке В сначала нужно построить векторы напряженности электрических полей от каждого заряда. Поскольку заряды положительны, то векторы Е / и Е // будут направлены от точки В в разные стороны. По условию q1 = q2:

The field strength at point B

Это значит, что в средине отрезка напряженность поля равна нулю.

В точке А необходимо произвести геометрическое сложение векторов Е1 и Е2. В точке А напряженность будет равна:

Источник

Физика. 10 класс

§ 19. Напряжённость электростатического поля. Принцип суперпозиции

Сила не может служить характеристикой поля, так как её модуль пропорционален значению пробного заряда q0. Однако отношение модуля силы, которой электростатическое поле точечного заряда Q действует на пробный заряд q0, не зависит от значения пробного заряда:

и, следовательно, может служить характеристикой поля.

Напряжённость электростатического поля — физическая векторная величина, равная отношению силы, которой поле действует на пробный заряд, к значению этого заряда:

С учётом выражений (19.1) и (19.2) можно определить модуль напряжённости электростатического поля, созданного точечным зарядом Q, в точке, находящейся на расстоянии r от него:

Таким образом, модуль напряжённости поля, создаваемого в вакууме точечным зарядом, прямо пропорционален модулю этого заряда и обратно пропорционален квадрату расстояния между зарядом и точкой, в которой определяют значение напряжённости.

Зная напряжённость электростатического поля, можно определить силу, действующую на любой точечный заряд в любой точке этого поля:

Напряжённость поля, как и сила, величина векторная. Направление напряжённости поля совпадает с направлением силы, действующей на положительный пробный электрический заряд. Напряжённость в любой точке электростатического поля точечного заряда направлена вдоль прямой, соединяющей эту точку и точечный заряд, создающий поле. Напряжённость поля, созданного точечным положительным зарядом Q > 0, направлена от заряда, а напряжённость поля, созданного точечным отрицательным зарядом Q От теории к практике

1. Как изменится модуль напряжённости в некоторой точке поля, созданного точечным зарядом Q, если: а) расстояние r от заряда до этой точки увеличить вдвое; б) заряд Q увеличить вдвое, а расстояние r от заряда до этой точки уменьшить вдвое?

2. Как направлена в точке А напряжённость поля, созданного неподвижным точечным зарядом (рис. 105)? Чему равен модуль напряжённости поля в этой точке?

Напряжённость электростатического поля, создаваемого равномерно заряженной бесконечной плоскостью, одинакова во всех точках полупространства с каждой стороны от плоскости (при этом ), а её модуль

где S — площадь некоторого участка плоскости, — модуль заряда этого участка ( рис. 105.2 ).

Интересно знать

Источник

Электрическое поле. Напряженность. Принцип суперпозиции

Электрическое поле. Напряженность электрического поля. Линии напряженности электрического поля (силовые линии). Однородное электрическое поле. Напряженность электростатического поля точечного заряда. Принцип суперпозиции полей. Теорема Гаусса. Электростатическое поле равномерно заряженных плоскости, сферы и шара.

Электрическое поле представляет собой векторное поле, существующее вокруг тел или частиц, обладающее электрическим зарядом, а также возникающее при изменении магнитного поля.

Единицы измерения: \(\displaystyle [\text<В>/\text<м>]\) (вольт на метр).

всегда начинаются на положительных зарядах и заканчиваются на отрицательных.

f t 3 2

— такое поле в данной области пространства. если вектор напряженности поля одинаков в каждой точке области.

При равномерном распределении электрического заряда \(q\) по поверхности площади \(S\) поверхностная плотность заряда \(\displaystyle \sigma\) постоянна и равна

Принцип суперпозиции полей

f t 3 3

Заряженная плоскость

Её электрическое поле однородно, то есть его напряжённость одинакова на любом расстоянии от плоскости, линии напряжённости параллельны. По теореме Гаусса:

Заряженная сфера

Рассмотрим электрическое поле равномерно заряженной сферы. Поток напряжённости через любую замкнутую поверхность внутри сферы равен нуля, так как внутри этой поверхности нет заряда. Отсюда следует, что внутри сферы напряжённость равна нулю.

Заряженный шар

Источник

Adblock
detector