электростатическое поле бесконечной заряженной плоскости

Электростатическое поле бесконечной заряженной плоскости

tr c w

Вычисление электрических полей с помощью теоремы Остроградского –Гаусса back go

Продемонстрируем возможности теоремы Остроградского-Гаусса на нескольких примерах.

Поле бесконечной однородно заряженной плоскости

Поверхностная плотность заряда на произвольной плоскости площадью S определяется по формуле:

071

где d q – заряд, сосредоточенный на площади d S; d S – физически бесконечно малый участок поверхности.

Пусть σ во всех точках плоскости S одинакова. Заряд q – положительный. Напряженность 005во всех точках будет иметь направление, перпендикулярное плоскости S (рис. 2.11).

Очевидно, что в симметричных, относительно плоскости точках, напряженность 005будетодинакова по величине и противоположна по направлению.

Представим себе цилиндр с образующими, перпендикулярными плоскости, и основаниями ΔS, расположенными симметрично относительно плоскости (рис. 2.12).

072
Рис. 2.11 Рис. 2.12

Тогда 073

Суммарный поток через замкнутую поверхность (цилиндр) будет равен:

076

Внутри поверхности заключен заряд 077. Следовательно, из теоремы Остроградского–Гаусса получим:

откуда видно, что напряженность поля плоскости S равна:

Полученный результат не зависит от длины цилиндра. Это значит, что на любом расстоянии от плоскости 080

Поле двух равномерно заряженных плоскостей

Пусть две бесконечные плоскости заряжены разноименными зарядами с одинаковой по величине плотностью σ (рис. 2.13).

Результирующее поле, как было сказано выше, находится как суперпозиция полей, создаваемых каждой из плоскостей 081.

Тогда внутри плоскостей

Вне плоскостей напряженность поля 083

085 084

Полученный результат справедлив и для плоскостей конечных размеров, если расстояние между плоскостями гораздо меньше линейных размеров плоскостей (плоский конденсатор).

Между пластинами конденсатора действует сила взаимного притяжения (на единицу площади пластин):

Механические силы, действующие между заряженными телами, называют пондермоторными.

Тогда сила притяжения между пластинами конденсатора:

где S – площадь обкладок конденсатора. Т.к. 089, то

Это формула для расчета пондермоторной силы.

Поле заряженного бесконечно длинного цилиндра (нити)

Пусть поле создается бесконечной цилиндрической поверхностью радиуса R, заряженной с постоянной линейной плотностью 091, где d q – заряд, сосредоточенный на отрезке цилиндра (рис. 2.14).

092

Из соображения симметрии следует, что Е в любой точке будет направлена вдоль радиуса, перпендикулярно оси цилиндра.

Представим вокруг цилиндра (нити) коаксиальную замкнутую поверхность (цилиндр в цилиндре) радиуса r и длиной l (основания цилиндров перпендикулярно оси). Для оснований цилиндров 093для боковой поверхности 094т.е. зависит от расстояния r.

Следовательно, поток вектора 005через рассматриваемую поверхность, равен 095

При 096на поверхности будет заряд 097По теореме Остроградского-Гаусса 098, отсюда

Если 100 101, т.к. внутри замкнутой поверхности зарядов нет (рис.2.15).

102

Если уменьшать радиус цилиндра R (при 103), то можно вблизи поверхности получить поле с очень большой напряженностью и, при 104, получить нить.

Поле двух коаксиальных цилиндров с одинаковой линейной плотностью λ, но разным знаком

106

В зазоре между цилиндрами, поле определяется так же, как и в предыдущем случае:

107

Это справедливо и для бесконечно длинного цилиндра, и для цилиндров конечной длины, если зазор между цилиндрами намного меньше длины цилиндров (цилиндрический конденсатор).

Поле заряженного пустотелого шара

Пустотелый шар (или сфера) радиуса R заряжен положительным зарядом с поверхностной плотностью σ. Поле в данном случае будет центрально симметричным, 005– в любой точке проходит через центр шара. 108,и силовые линии перпендикулярны поверхности в любой точке. Вообразим вокруг шара – сферу радиуса r (рис. 2.17).

Если 096то внутрь воображаемой сферы попадет весь заряд q, распределенный по сфере, тогда

откуда поле вне сферы:

Внутри сферы, при 100поле будет равно нулю, т.к. там нет зарядов: 111

113 112

Как видно из (2.5.7) вне сферы поле тождественно полю точечного заряда той же величины, помещенному в центр сферы.

Поле объемного заряженного шара

Для поля вне шара радиусом R (рис. 2.18) получается тот же результат, что и для пустотелой сферы, т.е. справедлива формула:

Но внутри шара при 100сферическая поверхность будет содержать в себе заряд, равный

115

где ρ – объемная плотность заряда, равная: 116; 117– объем шара. Тогда по теореме Остроградского-Гаусса запишем:

Таким образом, внутри шара 120

Источник

§ 1.12. Поле заряженной плоскости, сферы и шара

Поле равномерно заряженной бесконечной плоскости

Когда заряд распределен по какой-либо поверхности, то для расчета полей удобно ввести поверхностную плотность заряда с. Выделим на плоской поверхности маленький участок площадью ΔS. Пусть заряд этого участка равен Δq. Поверхностной плотностью заряда называют отношение заряда Δq к площади поверхности, по которой он распределен:

65 1

Эта плотность может непрерывно изменяться вдоль поверхности. Конечно, электрический заряд имеет дискретную (прерывную) структуру, так как сосредоточен в элементарных частицах. Но если на поверхности площадью ΔS содержится огромное число элементарных зарядов, то дискретную структуру заряда можно не принимать во внимание. Мы ведь пользуемся понятием плотности, считая, что масса непрерывно распределена в пространстве. А на самом деле все тела состоят из дискретных образований — атомов.

В случае равномерного распределения заряда q по поверхности площадью S поверхностная плотность заряда постоянна и равна:

65 2

Рассмотрим бесконечную равномерно заряженную плоскость. Поверхностная плотность заряда σ известна. Из соображений симметрии очевидно, что линии напряженности представляют собой прямые, перпендикулярные плоскости. Поле бесконечной плоскости — однородное поле. Во всех точках пространства, независимо от расстояния до плоскости, напряженность поля одна и та же.

Для применения теоремы Гаусса нужно выбрать замкнутую поверхность таким образом, чтобы можно было легко вычислить поток напряженности электрического поля через эту поверхность. В данном случае удобнее всего выбрать цилиндр, образующие которого параллельны линиям напряженности электрического поля, а основания параллельны плоскости (рис. 1.43).

1.43

Тогда поток через боковую поверхность цилиндра будет равен нулю. Поэтому полный поток равен потоку через основания цилиндра А и В:

66 1

где Еn — проекция вектора напряженности на нормаль к основанию цилиндра. Полный заряд внутри цилиндра равен σS. Согласно теореме Гаусса

66 2

Отсюда модуль напряженности равен:

66 3

В СИ эта формула принимает вид:

66 4

а в абсолютной системе

66 5

Поле равномерно заряженной сферы

Поток напряженности электрического поля через любую замкнутую поверхность внутри сферы равен нулю, так как равен нулю заряд. Это может быть лишь в том случае, когда напряженность поля внутри сферы равна нулю.

Найдем напряженность поля вне сферы. Из соображений симметрии ясно, что линии напряженности начинаются на поверхности сферы (в случае положительного заряда), направлены по радиусам сферы и перпендикулярны ее поверхности (рис. 1.44). Поэтому модуль напряженности поля одинаков во всех точках, лежащих на одинаковых расстояниях от центра сферы.

1.44

Проведем сферическую поверхность радиусом r > R, где R — радиус заряженной сферы. Поток напряженности через эту поверхность равен:

67 1

Если заряд сферы q, то по теореме Гаусса

67 2

Следовательно, модуль напряженности поля при r > R равен:

67 3

Таким образом, поле заряженной сферы совпадает вне сферы с полем точечного заряда, расположенного в центре сферы. График зависимости Е(r) изображен на рисунке 1.45.

1.45

Поле равномерно заряженного шара

Для характеристики распределения заряда по объему используется понятие объемной плотности заряда. Объемной плотностью заряда называется отношение заряда Δq к объему ΔV, в котором он распределен:

67 4

Эта плотность может непрерывно изменяться внутри заряженного тела. Если заряд q равномерно распределен по объему V, то объемная плотность заряда постоянна и равна:

68 1

Будем считать, что шар радиусом R равномерно заряжен; плотность заряда ρ известна. Полный заряд шара

68 2

Напряженность электрического поля вне шара можно найти с помощью теоремы Гаусса точно так же, как и напряженность равномерно заряженной сферы [см. формулу (1.12.9)]:

68 3

(при условии, что r > R). Поле аналогично полю точечного заряда q, расположенного в центре шара.

Для нахождения поля внутри шара нужно применить теорему Гаусса к потоку напряженности через сферическую поверхность радиусом к

Напряженность электрического поля линейно растет с увеличением расстояния вплоть до u = R. При r > R она определяется формулой (1.12.12). График модуля напряженности поля в зависимости от расстояния до центра представлен на рисунке 1.47.

1.47

Теорема Гаусса позволяет сравнительно просто определить напряженность электрического поля, если распределение заряда обладает определенной симметрией. Формулы (1.12.5), (1.12.9) и (1.12.15) следует запомнить. Их придется часто использовать.

Вопрос для самопроверки

* Мы предполагаем, что диэлектрическая проницаемость среды одинакова внутри и вне шара.

Источник

Задачи на теорему Гаусса с решениями

c2b77ece3235411db82d744e8ca2a106

Теорема Гаусса выражает связь между потоком вектора напряженности электрического поля через замкнутую поверхность и алгебраической суммой зарядов, заключенных в объеме, ограниченном этой поверхностью. О примерах использования теоремы Гаусса на практике поговорим в этой статье.

Присоединяйтесь к нам в телеграме, чтобы не только решать задачи, но и быть в курсе актуальных новостей для студентов всех специальностей.

Задачи на теорему Гаусса с решением

Если вам нужно сначала освежить теоретические знания, читайте подробную теорию по теореме Гаусса в нашем справочнике. Ну а перед решением задач не забудьте повторить памятку и на всякий случай держите под рукой полезные формулы.

Кстати, при решении задач на теорему Гаусса придется довольно часто брать интегралы. Хотите научиться делать это по-быстрому? У нас уже есть отдельная статья и видео на эту тему.

Задача на теорему Гаусса №1: напряженность поля плоскости

Условие

Определите напряженность поля бесконечной заряженной плоскости. Поверхностная плотность заряда сигма.

Решение

Линии напряженности перпендикулярны рассматриваемой плоскости и направлены в обе стороны от неё. Выберем в качестве гауссовой поверхности цилиндр с основанием, параллельным плоскости:

screenshot 1

screenshot 2

Поток сквозь цилиндр равен сумме потоков сквозь боковую поверхность цилиндра и потокам сквозь оба его основания. Поток сквозь боковую поверхность равен нулю, так как линии напряженности параллельны ей:

screenshot 3

Согласно теореме Гаусса:

screenshot 4

screenshot 5

Ответ: см. выше.

Задача на теорему Гаусса №2: напряженность поля двух пластин

Условие

Электрическое поле создано двумя параллельными заряженными тонкими пластинами с поверхностными плотностями заряда + сигма и -2 сигма. Площадь каждой пластины S, расстояние между пластинами d можно считать значительно меньшим их продольных размеров. Какова напряженность электрического поля, созданного этими пластинами?

Решение

Для электрического поля действует принцип суперпозиции: результирующее поле равно векторной сумме отдельных полей каждой пластины. Из предыдущей задачи мы знаем формулу, по которой вычисляется напряженность поля тонкой заряженной пластины, запишем для каждой из них:

screenshot 6

Векторы напряженности между пластинами совпадают по направлению, результирующая напряженность равна:

screenshot 7

Справа и слева от пластин, во внешней области, векторы направлены в разные стороны:

screenshot 8

Для наглядности приведем рисунок:

screenshot 9

Ответ: см. выше.

Задача на теорему Гаусса №3: напряженность электрического поля бесконечной нити

Условие

Определить напряженность электрического поля, создаваемую бесконечной тонкой нитью, равномерно заряженной с линейной плотностью заряда лямбда.

screenshot 10

Решение

Напряженность будем искать при помощи теоремы Гаусса. Наша задача – определить зависимость напряженности от расстояния от нити. В качестве поверхности выберем цилиндр с боковыми стенками, параллельными нити. Будем учитывать только поток вектора напряженности через боковую поверхность, так как поток через основания цилиндра равен нулю:

screenshot 11

Заряд нити внутри рассматриваемой поверхности равен заряду отрезка нити длиной l:

screenshot 12

screenshot 13

screenshot 14

Ответ: см. выше.

Задача с применением теоремы Гаусса №4

Условие

Электрическое поле создано бесконечной заряженной прямой линией с равномерно распределённым зарядом (τ = 10 нКл/м). Определить кинетическую энергию Т2 электрона в точке 2, если в точке 1 его кинетическая энергия Т1 = 200 эВ. Расстояние точки 2 от линии равно а = 0,5 см, точки 1b=1,5 см.

screenshot 15

Решение

Ранее рассмотренные задачи были примерами вычисления полей с помощью теоремы Гаусса. Теперь рассмотрим задачу, которая решается сиспользованием этой информации. Из предыдущей задачи возьмем выражение для напряженности поля заряженной нити:

screenshot 16

Разность потенциалов поля в двух точках будет равна:

screenshot 17

При прохождении этой разницы потенциалов электрон приобретёт кинетическую энергию:

screenshot 18

Конечная энергия частицы будет равна:

screenshot 19

screenshot 20

Ответ: 397.6 эВ.

Задача на теорему Гаусса №5: поток электрического поля

Условие

Два точечных заряда q и –q расположены на расстоянии 2l друг от друга. Найти поток вектора напряженности через круг радиуса R. Плоскость круга проходит через его середину и перпендикулярна отрезку прямой, соединяющей заряды.

Решение

screenshot 21

Рассмотрим элементарный поток результирующего электрического поля через бесконечно малую кольцевую зону круга:

screenshot 22

В записи потока учтено, что вектор напряженности перпендикулярен поверхности круга. Выразим напряженность электрического поля через «ро», используя подобие треугольников, показанных на рисунке:

screenshot 23

Вычисление потока сводится к взятию интеграла:

screenshot 24

Ответ: см. выше.

Примеры применения теоремы Гаусса можно найти не только в электростатике, но и в других областях физики.

Вопросы на теорему Гаусса

Вопрос 1. Сформулируйте теорему Гаусса.

Ответ. Теорема Гаусса гласит:

Поток вектора напряженности электростатического поля через замкнутую поверхность равен алгебраической сумме зарядов внутри поверхности, деленной на эпсилон нулевое (электрическую постоянную).

screenshot 25

Вопрос 2. Что такое поток вектора напряженности?

Ответ. Поток вектора напряженности – скалярная физическая величина, определяемая как число линий вектора напряженности, пронизывающих некоторую поверхность S. Поток напряженности электрического поля через поверхность S конечного размера определяется как алгебраическая сумма элементарных потоков:

screenshot 26

Вопрос 3. Что такое силовые линии напряженности?

Ответ. Это линии, с помощью которых используются для графического представления поля:

Вопрос 4. Где начинаются и где заканчиваются силовые линии?

Ответ. Силовые линии начинаются и заканчиваются на зарядах, оставаясь непрерывными в пустом пространстве.

Вопрос 5. Верно ли утвержление: теорема Гаусса справедлива только для неподвижных зарядов.

Ответ. Нет, так как заряд частицы не зависит от ее скорости.

Нужна помощь в решении задач и других студенческих заданий? Обратитесь в профессиональный студенческий сервис за качественным решением проблем.

c38b6d050dfd47d58c2cff2970fdd37e.small

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Источник

Adblock
detector