электроны в периодическом поле кристалла

ЗОННАЯ ТЕОРИЯ ТВЕРДЫХ ТЕЛ

2.1. Движение электронов в периодическом поле кристалла.

Уравнение Шредингера для кристалла

В первой главе обсуждалось квантово-механическое описание свободных микрочастиц или частиц, находящихся во внешнем силовом поле. Однако основные успехи квантовой механики связаны с изучением систем взаимодействующих микрочастиц (электронов, ядер, атомов, молекул), из которых состоит вещество. В этой главе мы применим квантовую механику к описанию поведения электронов в твердых кристаллических телах, рассматривая кристалл как систему микрочастиц.

В общем случае эта задача требует решения уравнения Шредингера для системы частиц (электронов и ядер), образующих кристалл. В этом уравнении необходимо учесть кинетическую энергию всех электронов и ядер, потенциальную энергию взаимодействия электронов между собой, ядер между собой, электронов с ядрами. Понятно, что в общем виде решение такого уравнения не представляется возможным, поскольку оно содержит порядка 10 22 переменных. Поэтому задачи, связанные с поведением электронов в кристалле, решаются при некоторых упрощающих допущениях (приближениях), правомерность которых определяется конкретными свойствами кристалла. Рассмотрим основные из этих допущений.

Адиабатическое приближение. В этом приближении предполагается, что электроны движутся в поле неподвижных ядер. Под ядрами здесь подразумевают собственно ядра атомов со всеми электронам, исключая валентные. Правомерность этого допущения определяется тем, что скорости электронов приблизительно на два порядка больше, чем скорости ядер, поэтому для любой, даже неравновесной конфигурации ядер всегда будет успевать устанавливаться соответствующее ей электронное равновесие. В этом представлении исключается обмен энергией между электронной и ядерной системами, поэтому это приближение называется адиабатическим. Естественно, что в адиабатическом приближении нельзя рассматривать такие явления, как диффузия, ионная проводимость и др., связанные с движением атомов или ионов.

Одноэлектронное приближение. В этом приближении вместо взаимодействия данного электрона с остальными электронами и ядрами по отдельности рассматривают его движение в некотором результирующем усредненном поле остальных электронов и ядер. Такое поле называют самосогласованным. В одноэлектронном приближении, таким образом, задача сводится к независимому описанию каждого электрона в среднем внешнем поле с потенциальной энергией U(r). Вид функции U(r) определяется свойствами симметрии кристалла. Основное свойство самосогласованного поля заключается в том, что оно имеет тот же период, что и поле ядер.

Таким образом, адиабатическое и одноэлектронное приближение приводит к задаче движения электрона в некотором периодическом потенциальном поле, имеющем период, равный постоянной решетки кристалла. Уравнение Шредингера в этом случае будет иметь вид

Следующие два допущения связаны с невозможностью точно определить вид функции U(r). Поэтому обычно при описании свойств электронов в кристалле рассматривают два предельных случая взаимодействия электронов с решеткой.

Приближение слабой связи. В этом приближении электроны в кристалле рассматривают как почти свободные частицы, на движение которых оказывает слабое возмущение поле кристаллической решетки. Данное допущение применимо, когда потенциальная энергия взаимодействия электрона с решеткой много меньше его кинетической энергии. Такой подход, который иногда называют «приближением почти свободных электронов«, позволяет получить решение некоторых задач, связанных с поведением валентных электронов в металлах.

В полупроводниках более приемлемым для анализа их физических свойств является приближение сильной связи. В этом приближении состояние электрона в кристалле мало отличается от его состояния в изолированном атоме. Приближение сильной связи применимо, когда потенциальная энергия электрона значительно больше его кинетической энергии.

2.2. Энергетические зоны в приближении сильной связи

image005

Рис. 2.1. Изменение состояния электронов при сближении атомов

Сблизим теперь эти атомы на расстояние, равное параметру кристаллической решетки натрия (рис. 2.1,б). Взаимодействие с соседними атомами будет оказывать влияние на первоначальные атомные энергетические уровни. В приближении сильной связи предполагается, что потенциальная энергия электрона в кристалле U(r) может быть представлена суммой

Поскольку в кристалле каждый уровень изолированного атома повторяется N раз, то он становится N-кратно вырожденным. Известно, что электрическое поле снимает вырождение и каждый уровень изолированного атома расщепляется на N близко расположенных (по значениям энергии) энергетических уровней. Здесь имеется аналогия со связанными осцилляторами. Если мы имеем два не связанных между собой каким-либо взаимодействием совершенно одинаковых осциллятора (математические маятники, электрические колебательные контуры и др.), то частоты их собственных колебаний совпадают. Взаимодействие между осцилляторами приводит к расщеплению одной частоты на две близкие частоты (при условии, что энергия взаимодействия между осцилляторами много меньше энергии собственных колебаний). Для N связанных между собой осцилляторов получим полосу из N близко расположенных частот. Аналогичный результат получается для системы взаимодействующих атомов. Число энергетических уровней, на которые расщепляется каждый энергетический уровень изолированного атома, равно числу атомов в кристалле. Величина расщепления тем больше, чем сильнее взаимодействие между атомами, т.е. чем меньше расстояние между ними. На рис. 2.2 показано схематически расщепление двух энергетических уровней атома под воздействием полей соседних атомов. Схема приведена для восьми атомов.

Решение уравнения Шредингера в приближении сильной связи приводит к следующему выражению для энергии электрона в периодическом поле трехмерной кубической решетки

image011

Рис.2.2. Расщепление энергетических уровней атома

В реальных кристаллах размером приблизительно 1 см 3 содержится

10 22 атомов. Ширина энергетической зоны обычно

1 эВ. В этом случае расстояние между уровнями в зоне составляет

2.3. Общие свойства волновой функции электрона в периодическом потенциале. Теорема Блоха

Для точного решения в одноэлектронном приближении задачи о движении электрона в кристалле необходимо решить уравнение Шредингера вида (2.1), где потенциал U(r) имеет периодичность кристаллической решетки, т.е.

Необходимость решения квантово-механической задачи связана с тем, что длина волны де Бройля электрона по порядку величины совпадает с периодом потенциала U (

Фундаментальные свойства волновой функции стационарного состояния определяются теоремой Блоха: собственные функции стационарного волнового уравнения с периодическим потенциалом имеют вид произведения функции плоской волны на функцию с периодичностью потенциала:

Индекс k у волновой функции указывает на то, что эта функция зависит от волнового числа. Появление индекса n связано с тем, что при фиксированных значениях k волновая функция не одинакова для электронов различных зон, образовавшихся из атомных уровней, n часто называют номером зоны. Множитель un,k(r) называют блоховским множителем. Он учитывает влияние кристаллического поля и отражает тот факт, что вероятность нахождения электрона в той или иной области кристалла повторяется от ячейки к ячейке.

Схематическое изображение электронных волновых функций, представленных в теореме Блоха, показано для одномерного случая на рис.2.3. Вверху (рис. 2.3,а) представлен потенциал U(x) вдоль цепочки атомов. Ниже (рис. 2.3,б) приведен пример собственной функции (ее действительной части). Эта функция равна произведению блоховского множителя u(x), имеющего периодичность решетки (рис. 2.3,в) и волновой функции свободного электрона в виде плоской волны (рис. 2.3,г), длина которой определяется волновым числом k. Представление волновой функции в виде (2.4) может быть сделано различными способами. Покажем это для одномерного случая. Одномерная волновая функция по теореме Блоха может быть записана в виде

image022

Рис. 2.3. Схематическое изображение электронных волновых функций в кристалле

2.4. Модель Кронига-Пенни

Теорема Блоха позволяет аналитически решить задачу об электроне в периодическом поле кристаллической решетки в приближении слабой связи при некоторых упрощающих предположениях. Основная трудность в решении уравнения (2.1) связана с невозможностью точно записать вид функции U(r). Поэтому часто периодическую зависимость функции U(r) заменяют более простой функцией с точно таким же периодом. В модели Кронига-Пенни ограничиваются рассмотрением одномерной задачи, в которой периодический потенциал заменяется цепочкой прямоугольных потенциальных ям (рис. 2.4). Ширина каждой ямы а, они отделены друг от друга прямоугольными потенциальными барьерами высотой U 0 и шириной b. Период повторения ям с = а + b.

image041

Рис.2.4. Изменение потенциальной энергии электрона:

Стационарное уравнение Шредингера будет иметь в этом случае вид

Начало системы координат (точку х = 0) выберем так, чтобы она совпадала с левым краем потенциальной ямы, как это показано на рис. 2.4,б. Tогда потенциальная функция

В соответствии с теоремой Блоха волновая функция электрона y (x) может быть представлена в виде

Индексы n и k упущены для простоты записи. Функция u(x) (блоховский множитель) имеет период c

image049

Подставляя (2.9) в уравнение (2.7), получим дифференциальное уравнение для блоховского множителя

image051 (2.10a)

для электронов, находящихся внутри потенциальных ям, и

image053 (2.10б)

Общее решение уравнения (2.10а) для электронов внутри потенциальных ям может быть записано в виде

В области вне потенциальных ям при условии, что высота потенциального барьера U0 выше полной энергии электрона Е, решение уравнения (2.10б) имеет вид

Постоянные A, B, C и D в формулах (2.11а) и (2.11б) находятся как обычно из граничных условий. Граничные условия требуют, чтобы функция u(x) и ее первая производная в местах скачков потенциала, т. е. на стенках потенциальных ям, были непрерывны. Эти требования приводят к следующей системе уравнений:

image065 (2.12)

2.5. Энергетические зоны в модели Кронига-Пенни

image084

Рис. 2.5. Зависимость от параметра a левой части уравнения (2.14)

image086

Рис. 2.6. Зависимость энергии электрона от волнового числа для p =2 и p =0 (штриховая линия)

На рис. 2.6 приведено дисперсионное соотношение для энергии электрона в кристалле. Видно, что зависимость E(k) претерпевает разрывы в точках, где image088 и т. д.

Если параметр p = 0, согласно равенству (2.14) image090 и

Последнее равенство соответствует дисперсионному соотношению для свободного электрона. На рис. 2.6 это дисперсионное соотношение изображено штриховой линией.

image098

Рис.2.7. Энергия электрона как функция волнового числа в схеме приведенных зон Бриллюэна

Предел P ® ¥ дает дискретный ряд уровней

image100

2.6. Заполнение энергетических зон электронами.

Металлы, диэлектрики и полупроводники

Несмотря на то, что энергетические зоны квазинепрерывны, они состоят пусть из очень большого, но конечного числа энергетических уровней. Число этих уровней определяется числом атомов N, объединенных в кристалл, и орбитальным квантовым числом l:

image108 (2.15)

Часто частично заполненная зона образуется в результате перекрытия полностью заполненной зоны со следующей совершенно свободной. Пример такой зонной структуры приведен на рис. 2.8,б для бериллия, у которого перекрываются заполненная 2s- и свободная 2p-зоны.

Большую группу составляют кристаллы, у которых над целиком заполненным зонами располагаются совершенно пустые зоны, причем ширина запрещенной зоны варьируется у них от нескольких десятков электронвольт до единиц электронвольт. Типичные примеры этой группы кристаллов показаны на рис. 2.8, в, г. Это углерод в модификации алмаза и кремний.

image109

Рис.2.8. Заполнение энергетических зон электронами

Эти рассуждения приводят к выводу о том, что для появления у тел высокой проводимости необходимо, чтобы в их энергетическом спектре присутствовали зоны, заполненные частично. На свободные уровни этих зон могут переходить электроны, увеличившие свою энергию под действием внешнего электрического поля (рис. 2.9). Поэтому тела с частично заполненными энергетическими зонами являются проводниками. Частично заполненные зоны имеют все металлы.

image110

image111

Теперь рассмотрим кристаллы, верхняя энергетическая зона которых заполнена электронами полностью (рис. 2.8, в, г). Внешнее электрическое поле не в состоянии изменить характер движения электронов, т. к. оно не в состоянии поднять электроны в вышележащую свободную зону. Внутри же самой полностью заполненной зоны, не содержащей ни одного свободного уровня, оно может вызывать лишь перестановку электронов местами, что не нарушает симметрии их распределения по скоростям. Это не приводит к возникновению электрического тока в таких кристаллах.

Таким образом, твердые тела с полностью заполненными электронами энергетическими зонами являются непроводниками. По ширине запрещенной зоны непроводники делятся на диэлектрики и полупроводники.

К диэлектрикам относят тела, имеющие относительно широкую запрещенную зону. У типичных диэлектриков Eg > 3 эВ. Так, у алмаза Eg = 5,2 эВ; у нитрида бора Eg = 4,6 эВ; у Al2O3 Eg = 7 эВ.

У типичных полупроводников ширина запрещенной зоны менее 3 эВ. Например, у германия Eg = 0,66 эВ; у кремния Eg = 1,12 эВ; у антимонида индия Eg = 0,17 эВ.

Верхняя заполненная зона полупроводников и диэлектриков называется валентной зоной, следующая за ней свободная зона называется зоной проводимости. В металлах частично заполненную зону называют как валентной зоной, так и зоной проводимости.

2.7. Эффективная масса электрона в кристалле и ее физический смысл

Особенности движения электронов в кристалле обусловлены их взаимодействием с кристаллической решеткой. Оказывается, что движение отдельного электрона в кристалле можно описывать тем же уравнением, что и для свободной частицы, т.е. в виде второго закона Ньютона, в котором учитываются только внешние по отношению к кристаллу силы.

Свободный электрон описывается монохроматической волной де Бройля и электрон в этом состоянии нигде не локализован. В кристалле же электрону необходимо сопоставить группу волн де Бройля с различными значениями частот w и волновых векторов k. Центр такой группы волн перемещается в пространстве с групповой скоростью

image113

Эта групповая скорость соответствует скорости перемещения электрона в кристалле.

Задачу о движении электрона будем решать для одномерного случая. Увеличение энергии электрона dE под действием внешней силы F равно элементарной работе dA, которую совершает внешняя сила за бесконечно малый промежуток времени dt:

image115 (2.16)

image119

Подставляя полученное выражение для групповой скорости в формулу (2.16), получим

image121

image123

Распространяя этот результат на трехмерный случай, получим векторное равенство

image125 (2.17)

Вычислим теперь ускорение a, приобретаемое электроном под действием внешней силы F. Ограничимся, как и в предыдущем случае, одномерной задачей. Тогда

image131

image137 (2.18)

Сравнивая выражение (2.18) со вторым законом Ньютона, видим, что электрон

в кристалле движется под действием внешней силы так, как двигался бы под действием той же силы свободный электрон, если бы он обладал массой

image139 (2.19)

Величину m* называют эффективной массой электрона в кристалле.

Особенности эффективной массы электрона связаны с видом дисперсионного соотношения электрона в кристалле (рис.2.10). Для электронов, располагающихся у дна энергетической зоны, дисперсионное соотношение можно приблизительно описать параболическим законом

image141

Для электронов, находящихся у вершины энергетической зоны (рис.2.10), дисперсионное соотношение можно приблизительно описать параболой вида

image145

image147

Рис. 2.10. Закон дисперсии для электрона в кристалле

image149

image151

Рис. 2.11. Зависимость эффективной массы электрона от волнового числа

Если при движении электрона в потенциальную энергию переходит не только вся работа внешней силы, но и часть кинетической энергии, имевшейся у электрона ( D Eк 0 ), то его скорость будет уменьшаться. В этом случае электрон ведет себя как частица с отрицательной эффективной массой. В случае, когда вся работа внешней силы переходит в потенциальную энергию ( D Eк = 0 ), то приращения кинетической энергии и скорости не происходит. Электрон ведет себя как частица с бесконечно большой эффективной массой. Бесконечно большой эффективной массой обладает электрон в точках перегиба дисперсионной кривой, которые на рис. 2.10 обозначены штриховыми линиями. Схематически зависимость эффективной массы электрона от его волнового числа показана на рис. 2.11.

2.8. Собственные полупроводники. Понятие о дырках

Из структуры энергетических зон полупроводников следует, что при абсолютном нуле они не проводят электрического тока. Нагревание их приводит к тому, что часть электронов валентной зоны приобретает энергию, достаточную для их перехода в зону проводимости, в результате чего появляется заметная электропроводность. С увеличением температуры число электронов в зоне проводимости увеличивается и вместе с этим растет электропроводность полупроводника. Тепловое возбуждение электронов проводимости иллюстрирует рис. 2.12. Ес и Еv обозначают дно зоны проводимости и потолок валентной зоны соответственно. Кроме температуры, возбуждение электронов проводимости может происходить и под действием других факторов, способных сообщить электронам энергию, достаточную для перехода их в зону проводимости. Этими факторами могут быть световое облучение, ионизирующее излучение и др.

image153

Рассмотренный выше механизм возникновения электропроводности полупроводниковых кристаллов, справедлив для абсолютно чистых материалов, не содержащих примесей, влияющих на электропроводность. Такие полупроводники называются собственными, а их электропроводность собственной электропроводностью. К собственным полупроводникам относятся кристаллы чистых химических элементов, таких как германий (Ge), кремний (Si), селен (Se), теллур (Te) и др., а также некоторые химические соединения: арсенид галлия (GaAs), арсенид индия (InAs), антимонид индия (InSb), карбид кремния (SiC) и многие другие.

Учитывая (2.20) и (2.21), уравнение движения дырки будет иметь вид

Это уравнение движения положительного заряда в электрическом поле. Поскольку дырка перемещается вдоль направления действующей на нее силы, то этой частице следует приписать положительную эффективную массу, равную по абсолютному значению отрицательной эффективной массе электрона, покинувшего вакантное состояние у потолка валентной зоны.

Вычислим ток, создаваемый электронами полностью заполненной энергетической зоны. Вклад в плотность тока от одного электрона, движущегося со скоростью vj равен

Ток всех электронов валентной зоны равен сумме токов отдельных электронов:

Суммирование производится по всем состояниям, занятым электронами. Поскольку дисперсионные кривые симметричны, каждому электрону с ненулевым значением скорости в положительном направлении всегда найдется электрон с равной по абсолютному значению, но противоположно направленной скоростью. Следовательно, сила тока, создаваемого электронами полностью заполненной зоны, будет равна нулю.

Если в валентной зоне заняты все состояния, кроме одного, характеризующегося волновым вектором ks и скоростью vs (рис. 2.13,г), то суммарную плотность тока в этом случае можно представить в следующем виде:

В этой формуле учтено, что первое слагаемое в силу симметричности состояний электронов равно нулю.

Таким образом, движение электронов валентной зоны, в которой есть одно вакантное состояние, эквивалентно движению одной частицы с положительной эффективной массой и положительным электрическим зарядом, помещенной в это состояние.

2.9. Примесные полупроводники

В реальных кристаллах полупроводников всегда присутствуют, пусть и в небольших количествах, дефекты, примеси, некоторые из которых оказывают существенное влияние на их электропроводность. Например, добавление в кремний бора в количестве одного атома на 10 5 атомов кремния увеличивает его электропроводность при комнатной температуре в 1000 раз. Полупроводники, содержащие примеси, существенно влияющие на его электропроводность, называются примесными полупроводниками, а их электропроводность примесной электропроводностью.

image170

Рис. 2.14 Схема проводимости в донорном полупроводнике:

Экспериментальное значение энергии ионизации фосфора в кремнии составляет 0,044 эВ. Другие донорные примеси имеют в кремнии и германии энергию ионизации того же порядка величины (см. таблицу).

Источник

Adblock
detector