электромагнитное поле материально или нет

Электромагнитное поле материально или нет

1. Возникновение понятия электромагнитного поля. До создания Максвеллом классической теории электромагнетизма понятия поля как формы материи не существовало [2]. Широко использовалось лишь понятие силовой функции (потенциала) как отношения внешней потенциальной энергии определенной совокупности зарядов или масс к одному из них, считающемуся «пробным», т.е. не нарушающим их пропорциональности. Представление о поле и его силовых линиях как о физической реальности впервые появилось в трудах Майкла Фарадея [3]. Ему же принадлежит идея изучения взаимопревращений электричества и магнетизма как различных форм энергии. Понятие электромагнитного поля как единой материальной сущности возникло лишь после создания Максвеллом теории электромагнетизма в связи с его представлением о свете как о последовательности электрических и магнитных волн [4]. До этого Максвелл, как и все его предшественники в течение многих веков, вполне удовлетворялся концепцией эфира, и лишь предложил его оригинальную модель в виде совокупности больших и малых вихрей, которые перемещаются, взаимодействуя наподобие шестеренной передачи. Эфир как нельзя лучше отвечал требованиям светоносной среды, поскольку он обладал собственной (внутренней) энергией и был способен переносить энергию в пространстве «после того, как она покинула одно тело и еще не достигло другого» [4]. Однако изначальный замысел Максвелла обосновать электромагнитную природу света и тем самым объединить оптику с электромагнетизмом побуждал его трактовать электромагнитное поле как некую самостоятельную сущность, обладающую энергией даже в отсутствие ее материальных источников (наподобие тому, как продолжает существовать свет давно потухшей звезды).

Известно, что признание теория электромагнитного поля Максвелла получила только после экспериментов Г.Герца, которые обнаружили факт передачи энергии электромагнитных колебаний от излучателя к приемнику через разделяющее их пространство [5]. Однако из этих экспериментов вовсе не следовало, что энергия электромагнитных колебаний в излучателе переносится в пространстве в той же самой электромагнитной форме, а не превращается в нем в энергию оптических колебаний эфира как светоносной среды. Об этом недвусмысленно указывала полная тождественность обнаруженных Герцем волн в эфире свойствам обычного света. Однако он интерпретировал результаты экспериментов как подтверждение теории Максвелла.

Справедливости ради следует заметить, что сам Фарадей хорошо понимал необходимость отмеченного выше превращения энергии при ее передаче эфиру, о чем свидетельствует такое его высказывание: «Я уже давно придерживался мнения, что различные формы и силы материи настолько близки и родственны, что могут превращаться друг в друга. Это твердое убеждение побудило меня произвести много изысканий с целью открыть связь между светом и электричеством. Однако результаты оказались отрицательными» [3].

Если бы Максвелл отнесся к этим словам с должным вниманием, он не стал бы отождествлять свет с электромагнитными колебаниями в эфире. Это касается и Герца, который также неоднократно подчеркивал различие параметров вещества и эфира. Поэтому трактовка им результатов эксперимента не была адекватной. Именно это и утверждал Н. Тесла после повторения опытов Герца в более близком к оптическому диапазоне частот, пытаясь убедить в этом Герца во время своего визита к нему [6]. Достойно сожаления, что современники Н. Тесла не отнеслись всерьез к его аргументам, превратив теорию Максвелла в «истину в последней инстанции». Статус этой теории не изменился даже после того, как было обнаружено нарушение закона сохранения энергии при распространении электромагнитных волн в свободном пространстве вследствие синфазного изменения в нем напряженностей электрической и магнитной составляющей электромагнитного поля [7].

Положение усугубилось изгнанием эфира из физики специальной теорией относительности (СТО), когда электромагнитное поле оказалось единственно возможным переносчиком излучения. Убежденность в его материальности оказалась столь глубокой, что ее не смогло поколебать даже отсутствие у квантов лучистой энергии (фотонов) электрических и магнитных свойств. Более того, аналогичная концепция была распространена и на гравитационное поле, хотя его кванты (гравитоны) экспериментально не обнаружены до сих пор.

В результате в классической теории электромагнетизма возникла и стала доминировать концепция, согласно которой поле и источники поля существуют независимо друг от друга и взаимодействие между ними обусловлено созданием или поглощением поля источниками [11].

2. Имеют ли уравнения Максвелла отношение к электромагнитному полю? В связи с изложенным вполне оправдан вопрос, к чему относились в действительности постулированные Максвеллом уравнения: к электротехническим устройствам, с которыми экспериментировали его предшественники и чьи результаты он выразил математически, или к введенному им абстрактному электромагнитному полю? Аргументированный ответ на этот вопрос стал возможным после теоретического вывода этих уравнений из первых принципов энергодинамики [12] в ее приложении к электротехнической системе, обладающей электрической и магнитной степенью свободы и потому способной к взаимному преобразованию их энергии. Мы не будем полностью воспроизводить здесь этот вывод [13]. Отметим только, что для этого оказалось достаточным рассмотреть одно из звеньев так называемой цепочки Брэгга, которая иллюстрирует процесс преобразования электрической энергии в магнитную и состоит из замкнутого электрического контура про­из­­­­воль­­ной длины и переменного (в общем случае) сечения, охваты­вающего замкнутый же магнитопровод с переменным по длине сечением.

Для такой системы в отсутствие диссипации, объемной деформации, химических реакций и массообмена справедливо объединенное уравнение 1-го и 2-го начал термодинамики, имеющее вид [12,14]:

Правая часть этого уравнения характеризует элементарную обратимую работу, которую совершает внешнее электрическое и магнитное поле над рассматриваемой системой:

rot H = j е + (∂ D /∂ t ). (5)

3. Характеризует ли вектор Пойнтинга поток электромагнитной энергии? Весьма часто в качестве главного аргумента в пользу понимания электромагнитного поля как единой материальной сущности используют понятие потока электромагнитного поля, трактуя вектор Пойнтинга П как его меру. Формально аналитическое выражение этого вектора легко получить, опираясь на уравнения Максвелла (4,5). Согласно им, изменение энергии системы единичного объема Э v во времени (1) при обратимых взаимопревращениях электрической и магнитной энергии определяется выражением:

Отсюда и следует известное представление вектор Пойнтинга:

Согласно этому выражению, вектор Пойнтинга можно представить внешним произведением векторов напряженности электрического E и H магнитного полей. Этот вектор ориентирован по нормали к ним, что соответствует представлению Максвелла о потоке электромагнитной энергии как некотором подобии потока несжимаемой жидкости.

Может показаться невероятным, но представление о свете как о совокупности электрического и магнитного полей, которые непрерывно превращаются друг в друга и тем самым поддерживают распространение волны, до сих пор не подвергалось серьезной экспериментальной проверке. Не подтверждено экспериментально и равенство мощностей электрической и магнитной составляющей этой волны, вытекающее из (1). Недавно проведенные прецизионные эксперименты смогли обнаружить лишь признаки магнитной составляющей в непосредственной близости к световоду [19]. Недаром все детекторы света в конечном счете основаны на его воздействии на заряженные частицы.

На этом основании Шрам (H. Schramm), Браумюллер (W. Braumüller), Н.Умов, Дж. Томсон (J.Thomson), Хэвисайд (О. Heaviside), Пуанкаре (J.H. Poincarе) и Хазенорль (F. Hasenöhrl) [20] задолго до А.Эйнштейна пришли к выводу о пропорциональности энергии излучения массе лучистого потока:

Как показано в [12], любая сила (внешняя и внутренняя, дальнодействующая и короткодействующая, механическая и немеханическая) определяется градиентом соответствующей формы энергии. Соответственно этому и любая волна порождает в эфире пару сил, пропорциональных крутизне соответственно переднего и заднего её фронта [21]. Эта пара противоположно направленных сил, разнесенная в пространстве, и порождает эффекты притяжения одних и отталкивания других волн, создавая предпосылки для уплотнения эфира с образованием твердых, жидких и газообразных тел в одних областях пространства и разрежения его в промежутке между ними. Это и воспринимается как образование тел, обладающих свойством полной или частичной «непроницаемости» друг для друга. Таким образом, в эфире, как и в веществе, основной причиной протекающих в них процессов, равно как и взаимодействия между ними, является их пространственная неоднородность.

История становления концепции невидимой всепроникающей среды уходит своими корнями в далекое прошлое религиозных, метафизических и научных поисков первооснов бытия [1]. Философы всех времен и народов выдвигали логические аргументы в обоснование ее существования, а многие ученые предлагали физические модели такой среды. Одной из них была теория вихрей Гельмгольца, в которой эфир представлялся совокупностью вихрей, которые вращаются вокруг их осевой линии и движутся в то же время поступательно. Как показал дальнейший математический анализ, выполненный В. Томсоном и Дж. Томсоном [22], условия образования и существования таких вихрей в жидкостях и газах таковы, что, раз возникнув, вихрь становится неразрушимым индивидуумом среди остальной массы жидкости, обладающим всеми свойствами, которые мы приписываем атому. На этом основании В. Томсон выдвинул идею «вихревых атомов», разнообразие формы которых обусловливает разнообразие веществ. Ряд других моделей и теорий эфира описан Г.А. Лоренцом [23].

Главным аргументом против такой концепции с момента ее возникновения явилось невозможность создания вихрей в идеальной жидкости. Если же жидкость вязкая, то вихревое движение в ней через некоторое время само собой прекратится. Кроме того, в таком случае движение твердых тел через эфир сопровождалось бы диссипацией энергии и возникновением «эфирного ветра», обусловленного наличием градиента скорости в так называемом «пограничном слое» частично увлекаемого твердыми телами эфира. Поэтому многие экспериментаторы (Физо, Фуко, Араго, Майкельсон и Морли, Гаэль и Миллер, Харисон, Саньяк и Погани) потратили немало лет на постановку опытов по обнаружению этого «ветра». До сих пор официально считается, что они не привели к его обнаружению, поскольку давали возможность неоднозначного их толкования. Это послужило основанием для отказа от концепции «эфира».

В эфире возникновение термодинамических сил Х в обусловлено наличием у любой волны пары сил, пропорциональных крутизне ее переднего и заднего фронта. Такие силы являются внутренними (не способными вызвать движение объекта как целого) и потому именуются обычно «внутренними напряжениями». Таково, например, поверхностное натяжение. Наличие таких сил и обусловливает напряженное состояние эфира, которое и является причиной всех происходящих в нем процессов, включая перенос излучения [25].

Существование в эфире незатухающих колебаний плотности делает его носителем собственной (внутренней) энергии, не зависящей от наличия каких-либо иных полей. Поэтому подмена эфира неким «электромагнитным полем», якобы не зависящим от источников, не имеет под собой реальной почвы. С позиций классической (доквантовой) физики единственной субстанцией, обладающей помимо вещества собственной энергией, является эфир. Приведенные здесь термодинамические аргументы, не опирающиеся на какие-либо гипотезы и постулаты, являются существенной поддержкой сторонников реабилитации эфира, продолжающих делать это на основании каких-либо его моделей [7,27,28 и др.].

Серьезную поддержку получает такая трактовка процесса излучения с позиций эфирно-солитоной концепции строения материи, которая представляет как вещество, так и излучение состоящим из солитонов (локализованных в пространстве структурно устойчивых частицеподобных волн). Эта теория не нуждается в постулировании дуализма «волна-частица» (ибо солитон и есть волна со свойствами частицы); в ней нет противопоставления эфира веществу (ибо оно отличается лишь наличием границ), для нее излишни специфические квантовые представления (ибо солитон и его энергия заведомо дискретны) [32].

Интерес к волновой теории строения вещества существенно возрастает по мере увеличения числа объектов, подпадающих под определение солитона. Ранее считалось, что структурная устойчивость уединенной волны обусловлена исключительно компенсацией «расползания» волны нелинейной зависимостью скорости перемещения ее фронта от высоты (амплитуды) волны (дисперсией света). Однако в эфире, где диссипация отсутствует, структурная устойчивость волны обеспечивается и в отсутствие дисперсии ее скорости, в том числе и в случае равенства этой скорости нулю [33].

Вышеизложенное свидетельствует о необходимости ревизии аксиоматических представлений современной физики и делает целесообразным возврат (по крайней мере в классической физике) к концепции эфира. К этому побуждает и запоздалое признание А.Эйнштейна в том, что согласно его убеждению поле отнюдь не вид материи, а её свойство, «ибо поле не обладает совокупностью свойств, присущих материи, а является средством взаимодействия материальных систем» [9]. При этом уже не достаточно определения поля как области пространства, в котором обнаруживаются какие-либо силы, поскольку наряду с силовыми (векторными) полями современная физика рассматривает скалярные и тензорные поля температур, давлений, концентраций, скоростей, деформаций и других свойств материальных тел.

Остается надеяться, что постепенное накопление «критической массы» экспериментальных данных вынудит научную общественность пересмотреть установившиеся взгляды на природу «невещественной» формы энергии и более внимательно отнестись к возможности ее использования.

3. Фарадей М. Экспериментальные исследования по электричеству, т.1-3.М., 1947-1959.

4. Максвелл Дж. К. Избранные сочинения по теории электромагнитного поля: Пер. с англ.- М.: Гостехтеориздат, 1952.

7. Ацюковский В.А. Общая эфиродинамика.- М. Энергоиздат, 1990.

8. Эйнштейн А. Об эфире. 1924 г. Собрание научных трудов. М.: Наука. 1966. Т. 2. С. 160.

12. Эткин В.А. Энергодинамика (синтез теорий переноса и преобразования энергии).- СПб, Наука, 2008. 409 с.

14. Базаров И.П. Термодинамика. Изд.4-е. М.Высшая школа, 1991.

20. Эткин В.А. Эквивалентны ли масса и энергия? viXra:1205.0049.

22. Томсон Дж. Дж. Взаимоотношения между материей и эфиром по новейшим исследованиям в области электричества: Пер. с англ./ Под ред. И. И. Боргмана. СПб.: Изд-во «Естествоиспытатель». 1910. 23 с.

23. Лоренц Г.А. Теории и модели эфира: Пер. с англ./ Под ред. А.К. Тимирязева. М.-Л.: ОНТИ, 1936.

35. Фейнман Р., Лейтон Р., Сэндс М. Фейнмановские лекции по физике. Т. 6. М.: Мир, 1966. С.15).

1) Последнее обусловлено синфазностью изменений напряженностей электрического и магнитного полей в электромагнитной волне.

3) По расчетам Уиллера, энергия физического вакуума приблизительно на 100 порядков больше данных астрономических наблюдений.

4) В границах существующих экспериментальных средств обнаружения структурных элементов.

5) Это и обусловливает восприятие фотона щелчком детектора как неделимого кванта излучения.

Источник

Электромагнитное поле и его взаимодействие с веществом

2.1 Материальность электромагнитного поля, его основные законы и характерные состояния

2.1.1 Материа­льность электромагнитного поля

2.1.2 Основные состояния электромагнитного поля

Поле считается электромагнитным, если в данной точке среды или свободного пространства есть одновременно два поля – электрическое img w0kOivи магнитноеimg spV54u. Возможны следующие состояния этого поля и его частных вариантов:

— Переменное электромагнитное поле, когда каждое из полей img dhB7aZиimg Jfl5JOпеременны, т.е. нестационарны во всех точках пространства.

— Стационарное электромагнитное поле, когда каждое из полей img QwOm zиimg dYkc2aстационарны во всех точках пространства.

— Стационарное электрическое поле, когда поле img 1ub45Rстационарно во всех точках пространства при отсутствии в них переменного магнитного поляimg m0w3Fl. При таких условиях электрическое поле является электростатическим.

— Стационарное магнитное поле, когда полеimg bD5Vopстационарно во всех точках пространства при отсутствии в них переменного поляimg f8ldCr. При таких условиях магнитное поле является магнитостатическим.

2.1.3 Энергия электромагнитного поля

☻ Электромагнитное поле является носителем энергии во всех своих состояниях, в том числе, когда оно является только электрическим или только магнитным. В зависимости от состояния плотность энергии поля определяется одним из трёх выражений:

Источник

Электромагнитные поля (ЭМП, ЭМИ) Определение и нормативы СанПиН

Электромагнитное поле (определение из БСЭ) — это особая форма материи, посредством которой осуществляется взаимодействие между электрически заряженными частицами. Исходя из этого определения не понятно, что является первичным – существование заряженных частиц или же наличие поля. Быть может только благодаря наличию электромагнитного поля частицы могут получать заряд. Также как и в истории с курицей и яйцом. Суть в том, что заряженные частицы и электромагнитное поле неотделимы друг от друга и друг без друга существовать не могут. Поэтому определение не даёт нам с вами возможности понять суть явления электромагнитного поля и единственное, что следует запомнить, что это особая форма материи! Теория электромагнитного поля была разработана Джеймсом Максвеллом в 1865 г.

Что такое электромагнитное поле? Можно представить себе, что мы живём в электромагнитной Вселенной, которая вся целиком и полностью пронизана электромагнитным полем, а различные частицы и вещества в зависимости от своего строения и свойств под воздействием электромагнитного поля приобретают положительный или отрицательный заряд, накапливают его, или же остаются электронейтральными. Соответственно электромагнитные поля можно разделить на два вида: статическое, то есть излучаемое заряженными телами (частицами) и неотъемлемое от них, и динамическое, распространяющееся в пространстве, будучи оторванным от источника, излучившего его. Динамическое электромагнитное поле в физике представляется в виде двух взаимноперпендикулярных волн: электрической (Е) и магнитной (Н).

Тот факт, что электрическое поле порождается переменным магнитным полем,а магнитное поле — переменным электрическим, приводит к тому, что электрические и магнитные переменные поля не существуют по-отдельности друг от друга. Электромагнитное поле неподвижных или равномерно движущихся заряженных частиц напрямую связано с самими частицами. При ускоренном движении этих заряженных частиц электромагнитное поле «отрывается» от них и существует независимо в форме электромагнитных волн, не исчезая с устранением источника.

Источники электромагнитных полей

Природные (естественные) источники электромагнитных полей

Магнитное поле Земли. Величина геомагнитного поля Земли меняется по земной поверхности от 35 мкТл на экваторе до 65 мкТл вблизи полюсов.

Электрическое поле Земли направлено нормально к земной поверхности, заряженной отрицательно относительно верхних слоев атмосферы. Напряжённость электрического поля у поверхности Земли составляет 120…130 В/м и убывает с высотой примерно экспоненциально. Годовые изменения ЭП сходны по характеру на всей Земле: максимальная напряжённость 150…250 В/м в январе-феврале и минимальная 100…120 В/м в июне-июле.

Атмосферное электричество – это электрические явления в земной атмосфере. В воздухе (ссылка) всегда имеются положительные и отрицательные электрические заряды – ионы, возникающие под действием радиоактивных веществ, космических лучей и ультрафиолетового излучения Солнца. Земной шар заряжен отрицательно; между ним и атмосферой имеется большая разность потенциалов. Напряжённость электрастатического поля резко возрастает во время гроз. Частотный диапазон атмосферных разрядов лежит между 100 Гц и 30 МГц.

Внеземные источники включают излучения за пределами атмосферы Земли.

Биологический электромагнитный фон. Биологические объекты, как и другие физические тела, при температуре выше абсолютного нуля излучают ЭМП в диапазоне 10 кГц – 100 ГГц. Это объясняется хаотическим движением зарядов – ионов, в теле человека. Плотность мощности такого излучения у человека составляет 10 мВт/см2, что для взрослого даёт суммарную мощность в 100 Вт. Человеческое тело также излучает ЭМП с частотой 300 ГГц с плотностью мощности около 0,003 Вт/м2.

Антропогенные источники электромагнитных полей

Антропогенные источники делятся на 2 группы:

Эта группа включает в себя все системы производства, передачи и распределения электроэнергии (линии электропередачи, трансформаторные подстанции, электростанции, различные кабельные системы), домашнюю и офисную электро- и электронную технику, в том числе и мониторы ПК, транспорт на электроприводе, ж/д транспорт и его инфраструктуру, а также метро, троллейбусный и трамвайный транспорт.

Уже сегодня электромагнитное поле на 18-32% территории городов формируется в результате автомобильного движения. Электромагнитные волны, возникающие при движении транспорта, создают помехи теле- и радиоприему, а также могут оказывать вредное воздействие на организм человека.

Источники высокочастотных излучений (от 3 кГц до 300 ГГц)

Особенностью облучения в городских условиях является воздействие на население как суммарного электромагнитного фона (интегральный параметр), так и сильных ЭМП от отдельных источников (дифференциальный параметр).

Источник

Электрическое и магнитное поле: в чем различия

Термином «поле» в русском языке обозначают очень большое пространство однородного состава, например, пшеничное или картофельное.

В физике и электротехнике его используют для описания различных видов материи, например, электромагнитной, состоящей из электрической и магнитной составляющих.

1460361203 jelektricheskoe i magnitnoe pole

Электрический заряд связан с этими формами материи. Когда он неподвижен, то вокруг него всегда есть электрическое поле, а при движении образуется еще и магнитное.

Представление человека о природе электрического (более точное определение — электростатического) поля сложилось на основе исследований опытным путем его свойств, ибо другого метода изучения пока не существует. При этом способе выявлено, что оно воздействует на движущиеся и/или неподвижные электрические заряды с определенной силой. По измерениям ее величины оценивают основные эксплуатационные характеристики.

1460361256 jelektricheskoe pole zarjada

вокруг электрических зарядов (тел или частиц);

при изменениях магнитного поля, как, например, происходит во время перемещения электромагнитных волн.

Изображают его силовыми линиями, которые принято показывать исходящими из положительных зарядов и оканчивающимися на отрицательных. Таким образом, заряды являются источниками электрического поля. По действию на них можно:

выявить наличие поля;

ввести калиброванную величину для измерения его значения.

1460361200 magnitnoe pole

электрические тела и заряды, находящиеся в движении с определённым усилием;

магнитные моменты без учета состояний их движения.

Магнитное поле создается:

прохождением тока заряженных частиц;

суммированием магнитных моментов электронов внутри атомов или других частиц;

при временном изменении электрического поля.

Его тоже изображают силовыми линиями, но они замкнуты по контуру, не имеют начала и конца в противоположность электрическим.

Взаимодействие электрического и магнитного полей

Первое теоретическое и математическое обоснование процессов, происходящих внутри электромагнитного поля, выполнил Джеймс Клерк Максвелл. Он представил систему уравнений дифференциальной и интегральной форм, в которых показал связи электромагнитного поля с электрическими зарядами и протекающими токами внутри сплошных сред либо вакуума.

В своем труде он использовал законы:

Ампера, описывающие протекание тока по проводнику и создание вокруг него магнитной индукции;

Фарадея, объясняющего возникновение электрического тока от воздействия переменного магнитного поля на замкнутый проводник.

1460361287 jelektricheskoe i magnitnoe pole

1460361250 peremennyjj potok magnitnogo polja

Труды Максвелла определили точные соотношения между проявлениями электрических и магнитных полей, зависящих от распределенных в пространстве зарядов.

1460361279 izobrazhenie jelektromagnitnogo polja

После публикации работ Максвелла прошло уже много времени. Ученые постоянно изучают проявления опытных фактов между электрическими и магнитными полями, но даже сейчас не особо получается выяснить их природу. Результаты ограничиваются чисто практическим применением рассматриваемых явлений.

Объясняется это тем, что с нашим уровнем знаний можно только строить гипотезы, ибо пока мы способны лишь предполагать что-то. Ведь природа обладает неисчерпаемыми свойствами, которые еще предстоит много и длительно изучать.

Сравнительная характеристика электрического и магнитного полей

Взаимную связь между полями электричества и магнетизма помогает понять очевидный факт: они не обособленны, а связаны, но могут проявляться по-разному, являясь единым целым — электромагнитным полем.

Если представить, что в какой-то точке пространства создано неоднородное поле электрического заряда, неподвижное относительно поверхности Земли, то определить вокруг него магнитное поле в состоянии покоя не получится.

1460361249 jelektricheskoe i magnitnoe pole po

Если же наблюдатель начнет перемещаться относительно этого заряда, то поле станет меняться по времени и электрическая составляющая образует уже магнитную, которую сможет увидеть своими измерительными приборами настойчивый исследователь.

Аналогичным образом эти явления проявятся тогда, когда на какой-то поверхности расположен неподвижный магнит, создающий магнитное поле. Когда наблюдатель станет перемещаться относительно него, то он обнаружит появление электрического тока. Этот процесс описывает явление электромагнитной индукции.

Поэтому говорить о том, что в рассматриваемой точке пространства имеется только одно из двух полей: электрическое или магнитное, не имеет особого смысла. Этот вопрос надо ставить применительно к системе отсчета:

Другими словами, система отсчета влияет на проявление электрического и магнитного поля таким же образом, как рассматривание пейзажей сквозь светофильтры различных оттенков. Изменение цвета стекол влияет на наше восприятие общей картинки, но, оно, даже если принять за основу естественный свет, создаваемый проходом солнечных лучей через воздушную атмосферу, не даст истинной картины в целом, исказит ее.

Значит, система отсчета является одним из способов изучения электромагнитного поля, позволяет судить о его свойствах, конфигурации. Но, она не обладает абсолютной значимостью.

Индикаторы электромагнитных полей

Электрически заряженные тела используют в качестве индикаторов, указывающих на наличие поля в определенном месте пространства. Ими, для наблюдения электрической составляющей, могут использоваться наэлектризованные мелкие кусочки бумаги, шарики, гильзы, «султаны».

1460361284 issledovanie jelektrostaticheskogo polja

Рассмотрим пример, когда по обе стороны плоского наэлектризованного диэлектрика расположены на свободном подвесе два индикаторных шарика. Они будут одинаково притягиваться к его поверхности и вытянутся в единую линию.

На втором этапе между одним из шариков и наэлектризованным диэлектриком поместим плоскую металлическую пластину. Она не изменит действующие на индикаторы силы. Шарики не поменяют свое положение.

Третий этап эксперимента связан с заземлением металлического листа. Сразу только как это произойдет, индикаторный шарик, расположенный между наэлектризованным диэлектриком и заземленным металлом, изменит свое положение, сменив направление на вертикальное. Он перестанет притягиваться к пластине и будет подвержен только гравитационным силам тяжести.

Этот опыт показывает, что заземленные металлические экраны блокируют распространение силовых линий электрического поля.

В этом случае индикаторами могут выступать:

замкнутый контур с протекающим по нему электрическим током;

магнитная стрелка (пример с компасом).

1460361219 stalnye opilki

Принцип распределения опилок из стали вдоль магнитных силовых линий является наиболее распространенным. Он же заложен в работу магнитной стрелки, которая, для уменьшения противодействия сил трения, закрепляется на остром наконечнике и этим получает дополнительную свободу для вращения.

Законы, описывающие взаимодействия полей с заряженными телами

Прояснению картины процессов, происходящих внутри электрических полей, послужили опытные работы Кулона, осуществляемые с точечными зарядами, подвешенными на тонкой и длинной нити из кварца.

1460361276 opyty kulona

Когда к ним приближали заряженный шарик, то последний влиял на их положение, заставляя отклоняться на определенную величину. Это значение фиксировалось на лимбе шкалы специально сконструированного прибора.

Таким способом были выявлены силы взаимного действия между электрическими зарядами, называемые электрическим, Кулоновским взаимодействием. Они описаны математическими формулами, позволяющими проводить предварительные расчеты проектируемых устройств.

1460361257 zakon kulona

Здесь хорошо работает закон, описанный Ампером на основе взаимодействия проводника с током, размещенного внутри магнитных силовых линий.

1460361279 zakon ampera

Для направления действия силы, осуществляющей воздействие на проводник с протекающим по нему током, применяют правило, использующее расположение пальцев на левой руке. Четыре соединенных вместе пальца необходимо расположить по направлению тока, а силовые линии магнитного поля должны входить в ладонь. Тогда оттопыренный большой палец укажет направление действия искомой силы.

Графические изображения полей

Для их обозначения на плоскости чертежа используются силовые линии.

Для обозначения линий напряженности в этой ситуации используют потенциальное поле, когда имеются неподвижные заряды. Силовая линия выходит из положительного заряда и направляется в отрицательный.

Примером моделирования электрического поля может служить вариант размещения кристаллов хинина в масле. Более современным способом считается использование компьютерных программ графических проектировщиков.

Они позволяют создавать изображения эквипотенциальных поверхностей, судить о численном значении электрического поля, анализировать различные ситуации.

1460361200 modelirovanie jelektricheskogo polja

У них для наглядности отображения применяются линии, характерные для вихревого поля, когда они замкнуты единым контуром. Приведенный ранее пример со стальными опилками наглядно отображает это явление.

Их принято выражать векторными величинами, имеющими:

определённое направление действия;

значение силы, рассчитываемое по соответствующей формуле.

Вектор напряженности электрического поля у единичного заряда можно представить в форме трехмерного изображения.

1460361282 naprjazhennost jelektricheskogo polja

направлена от центра заряда;

имеет размерность, зависящую от способа вычисления;

определяется бесконтактным действием, то есть на расстоянии, как отношение действующей силы к заряду.

Напряженность, возникающую в катушке, можно рассмотреть на примере следующей картинки.

1460361191 naprjazhennost magnitnogo polja katushki

Силовые магнитные линии в ней от каждого витка с внешней стороны имеют одинаковое направление и складываются. Внутри межвиткового пространства они направлены встречно. За счет этого внутреннее поле ослаблено.

На величину напряженности влияют:

сила проходящего по обмотке тока;

количество и плотность намотки витков, определяющих осевую длину катушки.

Повышенные токи увеличивают магнитодвижущую силу. Кроме того, в двух катушках с равным числом витков, но разной плотностью их намотки, при прохождении одного и того же тока эта сила будет выше там, где витки расположены ближе.

Таким образом, электрическое и магнитное поля имеют совершенно определенные отличия, но являются взаимосвязанными составляющими единого общего — электромагнитного.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Adblock
detector