электромагнитное поле это ток

Магнитное поле

Магнитное поле играет очень большую роль в электротехнике и электронике. Без магнитного поля не функционировали бы герконы, электромагнитные реле, соленоиды, катушки индуктивности, дроссели, трансформаторы, двигатели, динамики, генераторы электрической энергии да и вообще много чего.

Природа магнетизма

Согласно одной из легенд, когда-то давным-давно жил в Греции пастух по имени Магнес. И вот шел он как-то со своим стадом овец, присел на камень и обнаружил, что конец его посоха, сделанный из железа, стал притягиваться к этому камню. С тех пор стали называть этот камень магнетит в честь Магнеса. Этот камень представляет из себя оксид железа.

%D0%BC%D0%B0%D0%B3%D0%BD%D0%B5%D1%82%D0%B8%D1%82

Если такой камень положить на деревянную доску на воду или подвесить на нитке, то он всегда выстраивался в определенном положении. Один его конец всегда показывал на СЕВЕР, а другой — на ЮГ.

%D0%BC%D0%B0%D0%B3%D0%BD%D0%B5%D1%82%D0%B8%D1%82 %D0%BD%D0%B0 %D0%B2%D0%BE%D0%B4%D0%B5

Этим свойством камня пользовались древние цивилизации. Поэтому, это был своего рода первый компас. Потом уже стали обтачивать такой камень и делать из разные фигурки. Например, так выглядел китайский древний компас, ложка которого была сделана из того самого магнетита. Ручка у этой ложки всегда показывала на ЮГ.

%D0%BA%D0%B8%D1%82%D0%B0%D0%B9%D1%81%D0%BA%D0%B8%D0%B9 %D0%B4%D1%80%D0%B5%D0%B2%D0%BD%D0%B8%D0%B9 %D0%BA%D0%BE%D0%BC%D0%BF%D0%B0%D1%81

Ну а далее дело шло за практичностью и маленькими габаритами. Из магнетита вытачивали маленькие стрелки, которые подвешивали на тонкую иглу посередине. Так стали появляться первые малогабаритные компасы.

%D0%B4%D1%80%D0%B5%D0%B2%D0%BD%D0%B8%D0%B9 %D0%BA%D0%BE%D0%BC%D0%BF%D0%B0%D1%81 %D1%81%D0%BE %D1%81%D1%82%D1%80%D0%B5%D0%BB%D0%BA%D0%BE%D0%B9

Древние цивилизации, конечно, не знали еще что такое север и юг. Поэтому, одну сторону магнетита они назвали северным полюсом (North), а противоположный конец — южным (South). Названия на английском очень легко запомнить, если кто смотрел американский мультфильм «Южный парк», он же Сауз (South) парк).

%D1%81%D0%B0%D1%83%D0%B7 %D0%BF%D0%B0%D1%80%D0%BA

Магнитные линии и магнитный поток

Вокруг магнита экспериментальным путем были обнаружены магнитные силовые линии. Эти магнитные линии создают так называемое магнитное поле.

%D0%BB%D0%B8%D0%BD%D0%B8%D0%B8 %D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%BE%D0%B3%D0%BE %D0%BF%D0%BE%D0%BB%D1%8F

Как вы могли заметить на рисунке, концентрация магнитных силовых линий на самых краях магнита намного больше, чем в его середине. Это говорит о том, что магнитное поле является более сильным именно на краях магнита, а в его середине практически равна нулю. Направлением магнитных силовых линий считается направление от севера к югу.

Ошибочно считать, что магнитные силовые линии начинают свое движение от северного полюса и заканчивают свой век на южном. Это не так. Магнитные линии — они замкнуты и непрерывны. В магните это будет выглядеть примерно так.

%D0%B7%D0%B0%D0%BC%D0%BA%D0%BD%D1%83%D1%82%D1%8B%D0%B5 %D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D1%8B%D0%B5 %D0%BB%D0%B8%D0%BD%D0%B8%D0%B8

Если приблизить два разноименных полюса, то произойдет притягивание магнитов

%D0%B2%D0%B7%D0%B0%D0%B8%D0%BC%D0%BE%D0%B4%D0%B5%D0%B9%D1%81%D1%82%D0%B2%D0%B8%D0%B5 %D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D1%8B%D1%85 %D0%BF%D0%BE%D0%BB%D0%B5%D0%B9

Если же приблизить одноименными полюсами, то произойдет их отталкивание

%D0%B2%D0%B7%D0%B0%D0%B8%D0%BC%D0%BE%D0%B4%D0%B5%D0%B9%D1%81%D1%82%D0%B2%D0%B8%D0%B5 %D1%80%D0%B0%D0%B7%D0%BD%D0%BE%D0%B8%D0%BC%D0%B5%D0%BD%D0%BD%D1%8B%D1%85 %D0%BF%D0%BE%D0%BB%D1%8E%D1%81%D0%BE%D0%B2 %D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%B0

Итак, ниже важные свойства магнитных силовых линий.

Магнитные силовые линии, которые образуют магнитное поле, называют также магнитным потоком.

Итак, давайте рассмотрим два рисунка и ответим себе на вопрос, где плотность магнитного потока будет больше? На рисунке «а» или на рисунке «б»?

%D0%BF%D0%BB%D0%BE%D1%82%D0%BD%D0%BE%D1%81%D1%82%D1%8C %D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%BE%D0%B3%D0%BE %D0%BF%D0%BE%D1%82%D0%BE%D0%BA%D0%B0

Видим, что на рисунке «а» мало силовых магнитных линий, а на рисунке «б» их концентрация намного больше. Отсюда можно сделать вывод, что плотность магнитного потока на рисунке «б» больше, чем на рисунке «а».

В физике формула магнитного потока записывается как

%D1%84%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D0%B0 %D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%BE%D0%B3%D0%BE %D0%BF%D0%BE%D1%82%D0%BE%D0%BA%D0%B0

Ф — магнитный поток, Вебер

В — плотность магнитного потока, Тесла

а — угол между перпендикуляром n (чаще его зовут нормалью) и плоскостью S, в градусах

S — площадь, через которую проходит магнитный поток, м 2

%D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D1%8B%D0%B9 %D0%BF%D0%BE%D1%82%D0%BE%D0%BA

Что же такое 1 Вебер? Один вебер — это магнитный поток, который создается полем индукцией 1 Тесла через площадку 1м 2 расположенной перпендикулярно направлению магнитного поля.

Напряженность магнитного поля

Формула напряженности

Слышали ли вы когда-нибудь такое выражение: «напряженность между ними все росла и росла». То есть по сути напряженность — это что-то невидимое, какая-то сдерживающая сила, энергия. Здесь почти все то же самое. Напряженностью магнитного поля также часто называют силой магнитного поля. Напряженность магнитного поля напрямую зависит от плотности магнитного потока и выражается формулой

%D0%BD%D0%B0%D0%BF%D1%80%D1%8F%D0%B6%D0%B5%D0%BD%D0%BD%D0%BE%D1%81%D1%82%D1%8C %D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%BE%D0%B3%D0%BE %D0%BF%D0%BE%D0%BB%D1%8F

H — напряженность магнитного поля, Ампер/метр

B — плотность магнитного потока, Тесла

Эта формула работает только тогда, когда между витками катушки находится воздух, либо вакуум. Более крутая формула выглядит вот так.

%D0%BD%D0%B0%D0%BF%D1%80%D1%8F%D0%B6%D0%B5%D0%BD%D0%BD%D0%BE%D1%81%D1%82%D1%8C %D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%BE%D0%B3%D0%BE %D0%BF%D0%BE%D0%BB%D1%8F %D0%B2 %D0%B2%D0%B5%D1%89%D0%B5%D1%81%D1%82%D0%B2%D0%B5 %D1%84%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D0%B0

μ — это относительная магнитная проницаемость.

У разных веществ она разная

%D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%B0%D1%8F %D0%BF%D1%80%D0%BE%D0%BD%D0%B8%D1%86%D0%B0%D0%B5%D0%BC%D0%BE%D1%81%D1%82%D1%8C %D0%B2%D0%B5%D1%89%D0%B5%D1%81%D1%82%D0%B2

Напряженность магнитного поля проводника с током

Итак, имеем какой-либо проводник, по которому течет электрический ток.

%D0%BD%D0%B0%D0%BF%D1%80%D1%8F%D0%B6%D0%B5%D0%BD%D0%BD%D0%BE%D1%81%D1%82%D1%8C %D0%BF%D1%80%D0%BE%D0%B2%D0%BE%D0%B4%D0%BD%D0%B8%D0%BA%D0%B0 %D1%81 %D1%82%D0%BE%D0%BA%D0%BE%D0%BC

Для того, чтобы вычислить напряженность магнитного поля на каком-то расстоянии от проводника при условии, что проводник находится в воздушном пространстве либо в вакууме, достаточно воспользоваться формулой

%D0%BD%D0%B0%D0%BF%D1%80%D1%8F%D0%B6%D0%B5%D0%BD%D0%BD%D0%BE%D1%81%D1%82%D1%8C %D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%BE%D0%B3%D0%BE %D0%BF%D0%BE%D0%BB%D1%8F %D0%BF%D1%80%D0%BE%D0%B2%D0%BE%D0%B4%D0%BD%D0%B8%D0%BA%D0%B0 %D1%81 %D1%82%D0%BE%D0%BA%D0%BE%D0%BC

H — напряженность магнитного поля, Ампер/метр

I — сила тока, текущая через проводник, Ампер

r — расстояние до точки, в которой измеряется напряженность, метр

Магнитное поле проводника с током

Оказывается, если через какой-либо проводник пропустить электрический ток, то вокруг проводника образуется магнитное поле.

%D0%BF%D1%80%D0%B0%D0%B2%D0%B8%D0%BB%D0%BE %D0%B1%D1%83%D1%80%D0%B0%D0%B2%D1%87%D0%B8%D0%BA%D0%B0

Здесь можно вспомнить знаменитое правило буравчика, но для наглядности я лучше буду использовать правило самореза, так как почти все хоть раз в жизни ввинчивали либо болт, либо саморез.

%D1%81%D0%B0%D0%BC%D0%BE%D1%80%D0%B5%D0%B7

Ввинчиваем по часовой стрелке — саморез идет вниз. В нашем случае он показывает направление электрического тока. Движение наших рук показывает направление линий магнитного поля. Все то же самое, когда мы начинаем откручивать саморез. Он начинает вылазить вверх, то есть в нашем случае показывает направление электрического тока, а наша рука в этом время рисует в воздухе направление линий магнитного поля.

Также часто в учебниках физики можно увидеть, что направление электрического тока от нас рисуют кружочком с крестиком, а к нам — кружочком с точкой. В этом случае опять представляем себе саморез и уже в голове увидим направление магнитного поля.

%D0%BF%D1%80%D0%B0%D0%B2%D0%B8%D0%BB%D0%BE %D1%81%D0%B0%D0%BC%D0%BE%D1%80%D0%B5%D0%B7%D0%B0

Как думаете, что будет если мы сделаем вот такую петельку из провода? Что изменится в этом случае?

%D1%81%D1%83%D0%BC%D0%BC%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5 %D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%BE%D0%B3%D0%BE %D0%BF%D0%BE%D0%BB%D1%8F

Давайте же рассмотрим этот случай более подробно. Так в этой плоскости оба проводника создают магнитное поле, то по идее они должны отталкиваться друг от друга. Но если они хорошо закреплены, то начинается самое интересное. Давайте рассмотрим вид сверху, как это выглядит.

%D1%81%D1%83%D0%BC%D0%BC%D0%B0 %D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D1%8B%D0%B9 %D0%BF%D0%BE%D0%BB%D0%B5%D0%B9

Как вы можете заметить, в области, где суммируются магнитные силовые линии плотность магнитного потока прям зашкаливает.

Соленоид

А что если сделать много-много таких петелек? Взять какую-нибудь круглую бобину, намотать на нее провод и потом убрать бобину. У нас должно получится что-то типа этого.

%D0%BF%D1%80%D0%BE%D1%81%D1%82%D0%B0%D1%8F%20%D0%BA%D0%B0%D1%82%D1%83%D1%88%D0%BA%D0%B0

Если подать постоянное напряжение на такую катушку, магнитные силовые линии будут выглядеть вот так.

solenoid

Вы только посмотрите, какая бешеная плотность магнитного потока внутри такой катушки! Получается, что от каждой петельки магнитное поле суммируется, что в итоге дает такую плотность магнитного потока. Такую катушку также называют катушкой индуктивности или соленоидом.

Вот также схема, показывающая как магнитные силовые линии складываются в соленоиде.

%D1%81%D0%BE%D0%BB%D0%B5%D0%BD%D0%BE%D0%B8%D0%B4 %D0%BF%D1%80%D0%B8%D0%BD%D1%86%D0%B8%D0%BF %D1%80%D0%B0%D0%B1%D0%BE%D1%82%D1%8B

Плотность магнитного потока зависит от того, какая сила тока проходит через соленоид. Чтобы увеличить плотность магнитного потока, достаточно поверх витков намотать еще больше витков и вставить сердечник из специального материала — феррита.

%D0%BC%D0%BD%D0%BE%D0%B3%D0%BE%D0%BE%D0%B1%D0%BC%D0%BE%D1%82%D0%BE%D1%87%D0%BD%D0%B0%D1%8F %D0%BA%D0%B0%D1%82%D1%83%D1%88%D0%BA%D0%B0

Если в электрических цепях есть такое понятие, как ЭДС — электродвижущая сила, то и в магнитных цепях есть свой аналог — МДС — магнитодвижущая сила. Магнитодвижущая сила выражается в виде тока, протекающего через катушку из N витков и выражается в Амперах-витках.

%D1%84%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D0%B0 %D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BE %D0%B4%D0%B2%D0%B8%D0%B6%D1%83%D1%89%D0%B5%D0%B9 %D1%81%D0%B8%D0%BB%D1%8B

I — это сила тока в катушке, Амперы

N — количество витков катушки, штуки)

Также советую посмотреть очень простое и интересное видео про магнитное поле.

Похожие статьи по теме «магнитное поле»

Источник

Магнитное поле тока, магнитный ток.

Магнитное поле тока представляет собой силовое поле, воздействующее на электрические заряды и на тела, находящиеся в движении и имеющие магнитный момент, вне зависимости от состояния их движения. Магнитное поле является частью электромагнитного поля.

Ток заряженных частиц либо магнитные моменты электронов в атомах создают магнитное поле. Также, магнитное поле возникает в результате определенных временных изменений электрического поля.

Вектор индукции магнитного поля В представляет собой главную силовую характеристику магнитного поля. В математике В = В (X,Y,Z) определяется как векторное поле. Это понятие служит для определения и конкретизации физического магнитного поля. В науке зачастую вектор магнитной индукции попросту, для краткости, именуется магнитным полем. Очевидно, что такое применение допускает некоторую вольную трактовку этого понятия.

Ещё одной характеристикой магнитного поля тока есть векторные потенциал.

67598857a4c8815b2462.00248938

В научной литературе часто можно встретить, что в качестве главной характеристики магнитного поля, в условиях отсутствия магнитной среды (вакууме), рассматривается вектор напряжённости магнитного поля. Формально, такая ситуация вполне приемлема, поскольку в вакууме вектор напряженности магнитного поля H и вектор магнитной индукции B совпадают. В тоже время, вектор напряженности магнитного поля в магнитной среде не наполнен тем же физическим смыслом, и является второстепенной величиной. Исходя из этого при формальной равенства этих подходов для вакуума, систематическая точка зрения рассматривает вектор магнитной индукции основной характеристикой магнитного поля тока.

9787257a4c8ad3f5288.31191400

Магнитное поле, безусловно, представляет собой особенный вид материи. С помощью этой материи происходит взаимодействие между обладающими магнитным моментом и движущимися заряженными частицами либо телами.

Специальная теория относительности рассматривает магнитные поля как следствие существования самих электрических полей.

В совокупности магнитное и электрическое поля формируют электромагнитное поле. Проявлениями электромагнитного поля является свет и электромагнитные волны.

38716157a4c9b22bd1c3.07206044

Порождается магнитное поле либо током заряженных частиц, либо трансформирующимся во временном пространстве электрическим полем, либо собственными магнитными моментами частиц. Магнитные моменты частиц для однообразного восприятия формально сводятся к электрическим токам.

Вычисление значения магнитного поля.

Простые случаи позволяют вычислить значения магнитного поля проводника с током по закону Био-Савара-Лапласа, либо при помощи теоремы о циркуляции. Таким же образом может быть найдено значение магнитного поля и для тока, произвольно распределённого в объёме или пространстве. Очевидно, эти законы применимы для постоянных либо относительно медленно изменяющихся магнитных и электрических полей. То есть, в случаях наличия магнитостатики. Более сложные случаи требуют вычисления значения магнитного поля тока согласно уравнений Максвелла.

Проявление наличия магнитного поля.

Основным проявлением магнитного поля является влияние на магнитные моменты частиц и тел, на заряженные частицы находящиеся в движении. Силой Лоренца называется сила, которая воздействует на электрически заряженную частицу, которая движется в магнитном поле. Эта сила имеет постоянно выраженную перпендикулярную направленность к векторам v и B. Она также имеет пропорциональное значение заряду частицы q, составляющей скорости v, осуществляющейся перпендикулярно направлению вектора магнитного поля B, и величине, которая выражает индукцию магнитного поля B. Сила Лоренца согласно Международной системе единиц имеет такое выражение: F = q [v, B], в системе единиц СГС: F = q / c [v, B]

Векторное произведение отображено квадратными скобками.

В результате влияния силы Лоренца на движущиеся по проводнику заряженные частицы, магнитное поле и может осуществлять воздействие на проводник с током. Силой Ампера является сила, действующая на проводник с током. Составляющими этой силы считаются силы, воздействующие на отдельные заряды, которые движутся внутри проводника.

Явление взаимодействия двух магнитов.

Явление магнитного поля, которое мы можем встретить в повседневной жизни, получило название взаимодействие двух магнитов. Оно выражается в отталкивании друг от друга одинаковых полюсов и притяжении противоположных полюсов. С формальной точки зрения описать взаимодействия между двумя магнитами как взаимодействие двух монополей, является достаточно полезной, реализуемой и удобной идеей. В то же время, детальный анализ свидетельствует, что в действительности это не совсем верное описание явления. Основным вопросом, остающимся без ответа в рамках такой модели, является, почему монополя не могут быть разделены. Собственно, экспериментально доказано, что любое изолированное тело не имеет магнитный заряд. Также эту модель невозможно применить к магнитному полю, созданному макроскопическим током.

С нашей точки зрения, правильно считать, что сила, действующая на магнитный диполь, находящийся в неоднородном поле, стремится развернуть его таким образом, чтобы магнитный момент диполя имел одинаковое с магнитным полем направление. Однако нет магнитов, которые подвержены воздействию суммарной силы со стороны однородного магнитного поля тока. Сила, которая действует на магнитный диполь с магнитным моментом m выражается следующей формулой:

82255557a4c93fd916d5.78805435.

Действующая на магнит сила со стороны неоднородного магнитного поля, выражается суммой всех сил, которые определяются данной формулой, и воздействующих на элементарные диполи, которые составляют магнит.

Электромагнитная индукция.

В случае изменения во времени потока вектора магнитной индукции через замкнутый контур, в этом контуре формируется ЭДС электромагнитной индукции. Если контур неподвижен, она порождается вихревым электрическим полем, которое возникает в результате изменения магнитного поля со временем. Когда магнитное поле не изменяется со временем и нет изменений потока из-за движения контура-проводника, то ЭДС порождается силой Лоренца.

Источник

Ещё раз о том, что собою представляет электрический ток.

Многие прежние представления учёных оказывались ошибочными после того, как открывались новые подробности устройства механизма Природы. Например, вплоть до середины 19 века в науке доминировало представление о двух видах «электрического флюида», создающего в телах электрические заряды противоположного знака — положительные и отрицательные.

Именно через «конфликт» между двумя разными «электрическими флюидами», который, как предполагалось, возникает при их встречном движении по проводнику, при замыкании положительного и отрицательного выводов «Вольтова столба», датский учёный Ганс Эрстед описал в 1820 году своё эпохальное открытие влияния электрического тока на магнитную стрелку.

img YvVRgp

Это влияние электрического тока на магнитную стрелку, как подметил Эрстед, обусловлено образованием вихревого движения особой материи вокруг провода, по которому протекает электрический ток.

Впоследствии английский физик Майкл Фарадей, заменивший в этом опыте Эрстеда магнитную стрелку на железные опилки, назвал наблюдаемое с их помощью явление «магнитным полем», имеющим вихревой характер.

image004%20%284%29

Когда были открыты электроны, субатомные частицы, обычно движущиеся по своим орбиталям вокруг ядер атомов вещества, но способные также легко уходить в «свободные полёт», учёным стало ясно, что электрический ток в проводниках создают именно «свободные электроны», когда они упорядоченно движутся под действием внешней силы.

0005 004 %20%281%29

Соответственно, с открытием в 1897 году английским физиком Джозефом Томсоном свободных электронов стало окончательно ясно, что такие явления электростатики как заряжание тел положительным электричеством или заряжание тел отрицательным электричеством, происходят в тех случаях, когда с поверхности электрически нейтральных тел каким-либо путём снимаются свободные электроны или наоборот они переносятся на их поверхность.

Примеры образования разноимённых электростатических зарядов в телах с помощью трения.

При внешнем фотоэффекте, открытом в 1887 году немецким физиком Генрихом Герцем и детально изученном русским физиком Александром Столетовым в 1888-1889 годах, происходит выбивание свободных электронов с поверхности этих тел падающим на эти тела светом высоких энергий (ультрафиолетом, рентгеновскими лучами, гамма-излучением). Тела, теряющие таким образом свободные электроны, одновременно с этим теряют свой электрический заряд, становясь электрически нейтральными или даже положительно заряженными.

Screenshot 239%20%281%29

Все эти эффекты говорят нам о том, что сами по себе свободные электроны не могут покидать тела, даже если они являются электрически заряженными.

Чтобы свободный электрон ушёл за пределы поверхности того или иного тела, он должен получить определённой величины энергетический импульс, сообщающий ему дополнительную энергию, достаточную для отрыва от поверхности тела. Такую энергию выхода за пределы вещества свободные электроны получают не только при фотоэффекте и электризации тел механическим путём, но также и при сильном нагревании тел.

Однако, если нет ни того, ни другого, ни третьего, свободные электроны не покидают тел. В этой связи возникает закономерный вопрос: как ведут себя свободные электроны в тех или иных телах, когда никакие внешние силы на них не действуют?

Простейшие опыты по электростатике показывают, что заряженные тела одного знака, отталкиваются друг от друга, а разноимённые — притягиваются.

На этих рисунках представлены электрические заряды и силовых линии электрических полей.

Свободные электроны — это заряды одного знака. Соответственно, они всегда стремятся держаться подальше от других свободных электронов, находящихся внутри тех же тел.

А если таких свободных электронов в теле миллиарды штук, и за пределы этих тел, (даже находясь на их поверхности!) они выйти не могут, как газ не может выйти из закупоренной ёмкости, что тогда?

Кстати, среднее значение концентрации электронов в каждом кубическом сантиметре металла составляет примерно 10 в 23 степени.

Надо думать, что столь огромное количество свободных электронов подобно молекулам воздуха создаёт в проводниках своего рода «электронный газ», который может находиться как в состоянии давления, так и в состоянии разрежения, а также в состоянии равновесия с положительным зарядом атомных ядер вещества. В последнем случае тело является электрически нейтральным.

Средневековые учёные интуитивно так и понимали природу электричества, связывая его с представлением об «электрическом флюиде». Вот только они не могли догадаться, что тело приобретает положительный заряд при снижении внутреннего давления в «электронном газе», за счёт снятия с поверхности тела части свободных электронов, а отрицательный заряд тело приобретает, когда происходит повышение давления «электронного газа», за счёт переноса на поверхность тела дополнительных свободных электронов. Таким образом оба знака заряда (плюс и минус) создаёт в телах «электронный газ», находящийся в состоянии повышенного или пониженного давления.

Соответственно, чтобы нейтрализовать электрический заряд, находящийся на поверхности тела, необходимо сделать так, чтобы электроны могли перейти оттуда, где есть их переизбыток, туда, где имеется их дефицит.

То обстоятельство, что электростатические заряды, находящиеся на поверхности заряженных тел (электростатика), а также электрический ток, протекающий по проводникам (электродинамика), создают эффекты, выходящие далеко за пределы этих тел, дало учёным повод предположить существование материальных полей взаимодействия — электрического и магнитного.

slide 2

На этом рисунке электрическое поле представлено сиреневым цветом, а вихревое магнитное поле — синим. Провод, по которому проходит электрический ток, и с которым связаны эти явления, здесь не показан, но его наличие надо обязательно иметь ввиду, так как без участия и упорядоченного движения свободных электронов существование электрического и магнитного полей невозможно, кто бы и что бы ни говорил. (Подробно я поясню это позже).

Со временем учёным стало понятно, что силовое электрическое поле, через которое со скоростью света передаётся силовое взаимодействие между электронами, представляет собой особый, отличный от вещества вид материи, способный заполнять собой в веществе всё межатомное и внутриатомное пространство. Поэтому объяснение сущности электрического, магнитного и суммарного электромагнитного поля в учебниках физики не обходится без упоминания «особой формы материи».

Пример: «Электрическое ( электростатическое) поле — особая форма материи, передающее воздействие одного электрического заряда на другой электрический заряд в соответствии с законом Кулона». (Справочник по физике, автор Хорошавин С.Г.).

Скорость передачи силового взаимодействия между электронами и другими субатомными частицами, ограниченная скоростью

300 тысяч км/сек, по всей видимости, определяется исключительно электромеханической упругостью и плотностью этого межатомного и внутриатомного материального «наполнителя».

Причём самим электронам свойственно двигаться внутри электропроводящих тел под воздействием внешней силы со скоростью всего несколько миллиметров в секунду.

Как согласуется между собой крайне медленная скорость упорядоченного движения электронов в проводе с очень быстрой скоростью распространения по проводу силового электрического поля?

Зная о том, что свободные электроны образуют в металлах «электронный газ», и о том, что пространство между электронами плотно заполнено «особой материей, отличной от вещества», из которой формируются электрическое и магнитное поля, мы можем движение электрического тока по проводам уподобить потоку жидкости в гидравлической системе.

hydraulic analogy difference voltage current TESLA INSTITUTE

В обоих системах (электрической и гидравлической) с наивысшей скоростью передаётся по замкнутой цепи давление воды и напряжение электрического поля. Для воды эта скорость равна

1500 м/сек, для электрического поля она равна

300 тыс. км/сек. Если отследить в воде, которая под давлением движется по трубе, скорость отдельных капель или молекул, то окажется, что её величина составляет лишь единицы метров в секунду. Аналогично обстоит дело и с движущимися в потоке свободными электронами, который мы называем электрическим током. Электроны движутся в потоке ещё медленнее, чем молекулы воды, зато электрическое напряжение (аналог давления в воде) распространяется по проводам с гигантской скоростью.

Теперь, когда мы имеем некоторое представление о процессах, протекающих в электрических проводах, мы можем более детально представить, что такое электрический ток.

Когда в обмотке электрического генератора, вырабатывающего электроэнергию, свободные электроны сдвигаются с места под воздействием магнитного поля изменяющейся силы и перемещаются в ту или иную сторону вдоль провода, пусть даже и на микроскопическое расстояние.

0002 001 %20%281%29

. они толкают и деформируют своими электрическими полями электрические поля соседних электронов, те также сдвигаются со своего места на микроскопическую величину в направлении действия силы и в свою очередь своими электрическими полями толкают и деформируют электрические поля других соседних электронов. Так происходит движение вширь и вдоль провода объёмной упругой волны электрического поля, которая за счёт свойств «особой материи», отличной от вещества, распространяется со скоростью света.

Напомню читателю на всякий случай: «Электрическое (электростатическое) поле — особая форма материи, передающее воздействие одного электрического заряда на другой электрический заряд в соответствии с законом Кулона». (Справочник по физике, автор Хорошавин С.Г.).

Учитывая то, что свободные электроны своей совокупностью образуют в телах «электронный газ», не покидающий пределы наружной поверхности проводника, то упругая объёмная волна напряжения (давления) электрического поля, передающая силовое взаимодейстсвие между электронами, распространяется по проводнику (внутри «электронного газа») как по трубчатому волноводу, и за его пределы она не выходит.

Движение по проводу этой упругой волны электрического напряжения (электродвижущей силы, ЭДС) лучше всего объясняет рисунок американского инженера Николы Тесла, с помощью которого он также объяснил, как можно передавать электрическую энергию на любые расстояния всего по одному проводнику, нагруженному на свободном конце электростатической ёмкостью.

single wire power transmission analog%20%281%29

Обратите внимание на то, как работает на конце проводника электростатическая ёмкость в виде токопроводящей сферы, на наружной поверхности которой плотность электрических зарядов может то увеличиваться, то уменьшаться. Её аналогом в гидравлической системе является эластичная (резиновая) ёмкость, наружный размер которой может то увеличиваться, то уменьшаться.

За счёт нагнетания на поверхность уединённой электростатической ёмкости электрических зарядов или за счёт снятия с её поверхности электрических зарядов и возможно организовать передачу электроэнергии по одиночному проводнику.

Этот же принцип и этот же эффект «эластичной ёмкости», возникающий при движении электрических зарядов по поверхности проводников под действием Кулоновских сил, используется в радиотехнике для возбуждения в пространстве, окружающем проводник, радиоизлучений.

Ниже патент, выданный инженеру Н.Тесла в США 20 марта 1900 года, на систему для передачи электрической энергии без проводов, причём это дополнение к его раннему патенту от 1897 года:

c29adc41fc445fc15aaf467cb314d837%20%281%29

Слева передающая установка, справа приёмная установка, использующие электростатические ёмкости на свободных концах проводников, излучающих электрическую энергию в пространство и принимающих её из пространства. Правда, сам Тесла, придумал эти установки для передачи электрической энергии не через пространство, а через землю. В этом случае, говорил он, можно передавать энергию на любые расстояния с весьма малыми потерями.

Что касается так называемого «магнитного поля», которое всегда является вихревым по характеру, то учёным было изначально ясно, что оно образуется только при движении электрического тока.

image 4%20%281%29

В любой современной энциклопедии можно прочесть следующее утверждение: «Магнитное поле — это поле, действующее как на движущиеся электрические заряды, так и на тела, обладающие магнитным моментом, независимо от состояния их движения. Магнитное поле можно назвать особым видом материи, посредством которой осуществляется взаимодействие между движущимися заряженными частицами или телами, обладающими магнитным моментом. Вместе, магнитное и электрическое поля образуют электромагнитное поле». Источник: https://ru.wikipedia.org/wiki/Магнитное_поле

Как видим, и в случае с магнитным полем мы тоже имеем дело с материей, отличной от вещества. Только, если в случае с электрическим полем мы имеем в телах «электронный газ», находящийся под давлением (когда тела заряжены отрицательно) или в состоянии разрежения (когда тела заряжены положительно), то в случае с магнитным полем мы имеем вихревое движение этой же тончайшей материи, отличной от вещества, причём это вихревое движение тончайшей материи может охватывать области, простирающиеся на некоторое расстояние за пределы проводника.

То обстоятельство, что неподвижные электростатические заряды не создают магнитные поля, их создают только движущиеся упорядоченно электрические заряды, указывает нам направление поиска первопричины возникновения магнитных полей вокруг проводов с током.

В любой энциклопедии можно прочесть следующую информацию: «Магнитное поле создаётся (порождается) током заряженных частиц, или изменяющимся во времени электрическим полем, или собственными магнитными моментами частиц (последние для единообразия картины могут быть формальным образом сведены к электрическим токам)».

Поскольку всё большое состоит из малого, нам нетрудно понять, что большие магнитные поля образуются из слияния малых вихревых магнитных полей, постоянно присутствующих вокруг электронов по причине того, что они обладают собственными магнитными моментами.

Картина суммарного магнитного поля, возникающего вокруг многовитковой проволочной катушки при протекании по ней тока:

%D0%9A%D0%B0%D1%82%D1%83%D1%88%D0%BA%D0%B0%20%D0%B8%D0%BD%D0%B4%D1%83%D0%BA%D1%82%D0%B8%D0%B2%D0%BD%D0%BE%D1%81%D1%82%D0%B8%20(1)

Справка из энциклопедического словаря: «Магнитный момент элементарных частиц (электронов, протонов, нейтронов и других частиц), как показала квантовая механика, обусловлен существованием у них собственного механического момента — спина. Спин (от англ. spin, буквально — вращение, вращать(-ся)) — собственный момент импульса элементарных частиц)».

Таким образом мы приходим к пониманию, что магнитное поле как микрообъект существует вокруг электронов всегда, по причине того, что они обладают вращением, спином.

Screenshot 242

Как макрообъект магнитное поле возникает вокруг тел только тогда, когда большое количество электронов под действием внешней силы (ЭДС) приходит в упорядоченное поступательное движение, при этом их оси вращения (магнитные полюса электронов) занимают в пространстве одинаковое положение. В этом случае и происходит слияние миниатюрных вихрей каждого отдельно взятого электрона в один большой вихрь, окружающий тело, по котором течёт электрический ток.

Если всё это понятно, и ничто не вызывает возражений, то можно перейти к подведению некоторых итогов.

Первый и главный вывод: ни электрическое поле, ни вихревое магнитное поле не может существовать в отрыве от электрических зарядов.

ЭПИЛОГ

Как я написал в самом начале этой статьи, многие прежние представления учёных оказывались ошибочными после того, как открывались новые подробности устройства механизма Природы.

Когда английский учёный Майкл Фарадей открыл явление электромагнитной индукции, это случилось 29 августа 1831 года, он просто увидел, что электродвижущая сила (ЭДС), возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Причём величина ЭДС не зависит от того, что является причиной изменения потока — изменение самого магнитного поля или движение контура (или его части) в магнитном поле.

Screenshot 244

Спустя почти 30 лет, в 1860-х годах, шотландский учёный Джеймс Максвелл, который разумеется не знал и даже не догадывался о существовании электронов, они были открыты только в 1897 году, высказал смелую гипотезу об электромагнитной природе света. Впоследствии подтвердилось, что свет и все другие излучения (инфракрасное, ультрафиолетовое, рентгеновское) действительно порождаются движением электронов, вот только не факт, что свет распространяющийся в физическом вакууме (в безвоздушном пространстве) имеет электромагнитную природу!

Возможно, что в случае со светом, радиоволнами и прочими излучениями, порождаемыми движением электронов в вакуумных приборах или на поверхности проводников, мы имеем дело с иными формами материи, нежели изученные нами электрические и магнитные поля.

Иллюстрация ниже показывает устройство и принцип работы рентгеновской трубки, в которой жёсткое рентгеновское излучение порождается за счёт резкого торможения свободных электронов, предварительно ускоренных в сильном электрическом поле. Причём сами свободные электроны, при резком торможении которых рождаются рентгеновские лучи, за пределы рентгеновской трубки не вылетают.

Screenshot 243%20%281%29

Почему я так обозначил проблему современной физики?

Смотрите как подаётся история, связанная с Д.К.Максвеллом и с его «Электромагнитной теорией света» полуторавековой давности:

«. Оказалось, что не только ток, но и изменяющееся со временем электрическое поле порождает магнитное поле. В свою очередь, в силу закона Фарадея, изменяющееся магнитное поле снова порождает электрическое. В результате, в пустом пространстве может распространяться электромагнитная волна. Из уравнений Максвелла следовало, что её скорость равна скорости света, поэтому Максвелл сделал вывод об электромагнитной природе света. »

Максвеллу было простительно сделать в 1860-х годах предположение о том, что не только магнитное поле является вихревым, но и электрическое поле тоже может быть вихревым, и что оба они могут существовать в отрыве от электронов, он ведь ничего не знал об электронах и даже не подозревал об их существовании.

Но мы то уже знаем и про электроны, и про свойства создаваемых ими полей, и мы понимаем, что существование электрического и магнитного полей в отрыве электронов невозможно!

Давайте рассмотрим случай, представленный на рисунке ниже. Так в учебниках современной физики рассказывается об образовании внутри замкнутого металлического кольца вихревого электрического поля.

623574efe063f4e719b44767

В показанном на этом рисунке случае, изменяемый рукой оператора магнитный поток, пронизывая замкнутое металлическое кольцо, непосредственно воздействует на свободные электроны, и строго по закону электромагнитной индукции, вызывает их сдвиг в направлении, указанном тонкой стрелкой синего цвета.

В замкнутом металлическом кольце под воздействием изменяющегося магнитного потока свободные электроны сдвигаются фактически все одновременно, следовательно имеющиеся расстояния между ними, обусловленные действием Кулоновских сил не меняются. А значит, электродвижущая сила (ЭДС) в этом случае не возникает! Еинд = О. То есть, вихревого электрического поля, которое должно характеризоваться величиной напряжённости, нет! А вот если бы металлическое кольцо не было замкнутым, то под воздействием изменяющегося магнитного поля мы бы имели скопление свободных электронов на одном его конце, недостаток свободных электронов на другом его конце, и в дополнение к этому мы бы имели некоторую напряжённость электрического поля между наведёнными зарядами.

К сожалению, несмотря на такие очевидные вещи, современная мировая наука отказывается признавать ошибочность теории Д.К.Максвелла, построенной на предположении, что электрические и магнитные поля могут существовать в отрыве от электрических зарядов. До сих пор заявляется, что оба эти поля могут существовать даже в вакууме, в котором отсутствуют малейшие признаки какого-либо вещества.

В школах и ВУЗах учителя до сих пор преподают учащимся, что для образования вихревого электрического поля «проводник вообще не нужен! Проводник является всего лишь индикатором того, что здесь есть электрическое поле! Если убрать проводник и оставить меняющееся магнитное поле, то электрическое поле всё-равно возникает в пространстве. Причём линии этого поля, силовые линии, направлены вот так, они замкнуты. Такое поле, линии которого замкнуты, называется вихревым.

1 13

Когда оно появляется? При изменении магнитного поля. Итак, пишем вывод: При изменении магнитного поля в пространстве, в нём возникает вихревое электрическое поле. Проводник при этом не нужен! Без всякого проводника. В пустоте, в вакууме возникает вихревое электрическое поле. » Источник: https://youtu.be/FAqvdIPttjo

Я же хочу сказать следующее:

То обстоятельство, что скорость распространения электрического поля в проводах равна скорости света в вакууме, позволяет высказать предположение, что и в проводах, и в вакууме (безвоздушном пространстве) имеет место распространение упругих волн в одной и той же тончайшей среде, которая отлична от вещества.

Причём, если электрическое поле распространяется в проводах со скоростью света как упругая продольная волна, то и в вакууме (безвоздушном пространстве) волна света тоже представляет собой упругую продольную волну, движущуюся наступательно.

При этом в реальной волне света равно как и в радиоволне нет места как вихревому магнитному полю, так и вихревому электрическому полю!

Пытаться объяснять явление поляризации света (равно как и явление поляризации радиоволн) с помощью поперечных колебаний магнитного и электрического полей, якобы существующих в отрыве от свободных электронов, было большой ошибкой учёных 19 века.

Создание в ХХ веке квантовой физики дало подсказку, но ею никто из академиков не спешит воспользоваться, что явление поляризации света можно легко объяснить вращением частиц света («фотонов») вокруг своей оси.

htmlconvd

Обычный свет после прохождения через поляризатор становится поляризованным, и это обстоятельство заставило учёных придумать поперечные электромагнитные волны.

Хотя, казалось бы, что может быть проще и яснее?! При пропускании неполяризованного света через поляризатор тормозятся все фотоны, оси которых не совпадают с главной осью поляризатора, но те фотоны, у которых оси совпадают с главной осью поляризатора, проходят сквозь него свободно. Так из неполяризованного света получается поляризованный свет. Это исчерпывающее объяснение. И не надо никому рассказывать волшебные сказки про «поперечные колебания вихревых полей, электрического и магнитного в абсолютной пустоте»!

Фотоны — это возбужденные частицы всё той же материи, отличной от вещества, в которой возникают хорошо известные нам электрические и магнитные поля.

Причём гипотетические «поперечные колебания вихревых полей», о которых рассказывает современная физика, нельзя ни нарисовать, ни представить в здравом воображении! А то, что подаётся в учебниках физики под видом радиоволны, является несуразицей, в которой отсутствует даже намёк на то, что поля, электрическое и магнитное, колеблющиеся поперёк направления распространения радиоволны в пространстве, являются вихревыми, как того требует «Электромагнитная теория света» Д.К.Максвелла:

image013

Где здесь хоть намёк на то, что в радиоволне имеет место движение/колебание именно вихревого магнитного поля и именно вихревого электрического поля?!

Реальная картина радиоволны, имеющей продольную компоненту и состоящей из «фотонов», может быть, например, такой:

Screenshot 455%20%282%29%20%281%29

Если я достаточно ясно всё объяснил, мне остаётся лишь надеется, что процесс ревизии мировой физической науки и переписывания учебников физики первыми начнут российские учёные.

14 марта 2021 г. Мурманск. Антон Благин

Источник

Adblock
detector