электромагнитное поле это особая форма материи

Электромагнитное поле

Полезное

Смотреть что такое «Электромагнитное поле» в других словарях:

ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ — ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ, один из видов поля физического. Характеризуется напряженностями (или индукциями) электрического поля и магнитного поля. Переменное электромагнитное поле может распространяться в виде электромагнитных волн. Электромагнитное… … Современная энциклопедия

Электромагнитное поле — ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ, один из видов поля физического. Характеризуется напряженностями (или индукциями) электрического поля и магнитного поля. Переменное электромагнитное поле может распространяться в виде электромагнитных волн. Электромагнитное… … Иллюстрированный энциклопедический словарь

ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ — физ. поле, взаимодействующее с электрически заряж. частицами вещества, а также с частицами, имеющими собственные дипольные и мультипольные электрич. и магн. моменты. Концепция поля для описания электрич. и магн. явлений [первонач. в форме… … Физическая энциклопедия

электромагнитное поле — Вид материи, определяемый во всех точках двумя векторными величинами, которые характеризуют две его стороны, называемые «электрическое поле» и «магнитное поле», оказывающий силовое воздействие на электрически заряженные… … Справочник технического переводчика

ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ — см. (13, 15) … Большая политехническая энциклопедия

ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ — особая форма материи. Посредством электромагнитного поля осуществляется взаимодействие между заряженными частицами. Характеризуется напряженностями (или индукциями) электрических и магнитных полей … Большой Энциклопедический словарь

Электромагнитное поле — ЭЛЕКТРОМАГНИТНЫЙ, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ — особая форма материи, посредством к рой осуществляется вз ствие между электрически заряж. ч цами (см. ПОЛЯ ФИЗИЧЕСКИЕ). Э. п. в вакууме характеризуется вектором напряжённости электрич. поля Е и магн. индукцией В, к рые определяют силы,… … Физическая энциклопедия

Электромагнитное поле — совокупность как переменного электрического, так и неразрывно с ним связанного магнитного поля. Источник: МСанПиН 001 96. Санитарные нормы допустимых уровней физических факторов при применении товаров народного потребления в бытовых условиях.… … Официальная терминология

Электромагнитное поле — Классическая электродинамика … Википедия

электромагнитное поле — особая форма материи, посредством которой осуществляется взаимодействие между заряженными частицами. Характеризуется напряжённостями (или индукциями) электрического и магнитного полей. * * * ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ, особая… … Энциклопедический словарь

Источник

ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ. Электромагнитное поле – это особая форма материи, посредством которой осуществляется взаимодействие между электрически заряженными частицами

Электромагнитное поле – это особая форма материи, посредством которой осуществляется взаимодействие между электрически заряженными частицами.

Электрическое поле – создается электрическими зарядами и заряженными частицами в пространстве.

Магнитное поле – создается при движении электрических зарядов по проводнику.

Физической причиной существования электромагнитного поля является то, что изменяющееся во времени электрическое поле возбуждает магнитное поле, а изменяющееся магнитное поле – вихревое электрическое поле. Непрерывно изменяясь, оба компонента взаимодействуя, порождают электромагнитное поле. Поле неподвижной или равномерно движущейся частицы неразрывно связано с носителем. Но при ускоренном движении носителей электромагнитное поле «срывается» с них и существует в окружающей среде независимо, в виде электромагнитной волны, не исчезая с устранением носителя.

Основными характеристиками электромагнитного излучения считаются:

Длина волны прямо связана с частотой через скорость распространения излучения. Групповая скорость распространения электромагнитного излучения в вакууме равна скорости света, в иных средах эта скорость меньше. Фазовая скорость электромагнитного излучения в вакууме также равна скорости света, в различных средах она может быть как меньше, так и больше скорости света.

Описанием свойств и параметров электромагнитного излучения в целом занимается электродинамика, однако свойствами излучения отдельных областей занимаются более специализированные разделы физики. Существуют теории, позволяющие смоделировать и исследовать свойства и проявления электромагнитного излучения. Наиболее фундаментальной из завершенных и проверенных теорий такого рода является квантовая электродинамика. Для описания относительно низкочастотного электромагнитного излучения в макроскопической области используют, как правило, классическую электродинамику, основанную на уравнениях Максвелла.

Источник

Электромагнитные поля и влияние их на организм человека

Электромагнитное поле (ЭМП) – это особая форма материи, посредством которой осуществляется взаимодействие между электрически заряженными частицами.

ЭМП состоит из двух составляющих: электрического поля, которое создается электрическими зарядами заряженными частицами в пространстве и магнитного поля, которое создается при движении электрических зарядов по проводнику.

Электрическое поле характеризуется напряженностью электрического поля (Е, В/м), магнитное поле – напряженностью магнитного поля (Н, А/м). Физической причиной существования ЭМП является то, что изменяющееся во времени электрическое поле возбуждает магнитное поле, а магнитное поле – вихревое электрическое поле. Непрерывно изменяясь, обе компоненты поддерживают существование электромагнитного поля. ЭМП характеризуется длиной волны (м) и частотой (Гц).

Электромагнитные волны как правило классифицируются по частотам и длине волны. По частотному и волновому диапазону электромагнитные волны подразделяются: на крайне низкие, КНЧ (3-30Гц) – декамегаметровые (100-10Мм); сверхнизкие, СНЧ (30-300Гц) – мегаметровые (10-1Мм); инфранизкие, ИНЧ (0,3-3Кгц) – гектокилометровые (1000-100км); очень низкие, ОНЧ (3-30Кгц) – мириаметровые (100-10км); низкие частоты, НЧ (30-300Кгц) – километровые (10-1км); средние, СЧ (0,3-3МГц) – гектометровые (1-0,1км); высокие, ВЧ (3-30МГц) – декаметровые (100-10м); очень высокие, ОВЧ (30-300МГц) – метровые (10-1м); ультравысокие, УВЧ (0,3-3ГГц) – дециметровые (1-0,1м); сверхвысокие, СВЧ (3-30ГГц) – сантиметровые (10-1см); крайне высокие, КВЧ (30-300ГГц) – миллиметровые (10-1мм); гипервысокие, ГВЧ (300-3000ГГц) – децимиллиметровые (1-0,1мм).

Электромагнитные поля радиочастот обладают рядом свойств (способностью нагревать материалы, распространяться в пространстве и отражаться от границы раздела двух сред, взаимодействовать с веществом), благодаря которым ЭМП широко используется в различных отраслях народного хозяйства: промышленности, науке, технике, медицине. Электромагнитные волны диапазона низких, средних, высоких и очень высоких частот применяется для термообработки металлов, полупроводниковых материалов и диэлектриков (поверхностный нагрев металла, закалка и отпуск, напайка твердых сплавов, пайка, плавка металлов и полупроводников, сушка древесины и др.).

ЭМП диапазона ВЧ и ОВЧ часто применяются в радиосвязи, телевидении, медицине, для нагрева диэлектриков в высокочастотном электрическом поле (сварка полимерной пленки, полимеризации клея при склейке деревянных изделий, нагрев пластмасс и пресспорошков и др.).

Электромагнитные волны диапазона УВЧ, СВЧ и КВЧ используются в радиолокации, радионавигации, для релейной связи, геодезии, дефектоскопии,

физиотерапии. ЭМП УВЧ диапазона применяются для вулканизации резины, термической обработке, стерилизации, пастеризации, вторичного нагрева пищевых продуктов и т.д.

В физиотерапии ЭМП используют как один из терапевтических факторов в комплексном лечении многих заболеваний ( ВЧ-установки для диатермии и индуктотермии, специальные аппараты УВЧ-терапии, СВЧ-аппараты для микроволновой терапии).

В обычных условиях в качестве основных источников электромагнитного поля можно выделить: линии электропередач (ЛЭП), бытовые электроприборы, персональные компьютеры, теле-радиопередающие станции, спутниковая и сотовая связь (приборы, ретрансляторы), электротранспорт, радарные установки и др.

Таким образом, в повседневной жизни человек постоянно подвергается воздействию электромагнитных полей, которые частично или полностью поглощаются тканями биологического объекта и биологическое воздействие зависит от физических параметров ЭМП: длины волны, частоты колебаний, интенсивности и режима излучения (непрерывный, прерывистый, импульсный), продолжительности и характера облучения организма (постоянное, интермиттирующее), а также от площади облучаемой поверхности и анатомического строения органа или ткани.

Поглощенная энергия ЭМП приводит колебаниям молекул воды и ионов, содержащихся в тканях, которые в свою очередь приводят к преобразованию поглощенной электромагнитной энергии в тепловую, что сопровождается повышением температуры тела или локальным избирательным нагревом тканей, органов, клеток, особенно с плохой терморегуляцией (хрусталик, стекловидное тело, семенники и др.). Тепловой эффект зависит от интенсивности облучения, пороговые интенсивности теплового действия ЭМП на организм животных составляют: для диапазона средних частот 8000В/м, высоких – 2250В/м, очень высоких – 150В/м, дециметровых – 40В/м, сантиметровых – 10В/м, миллиметровых – 7мВт/см2. ЭМП ниже указанных величин не оказывает тепловое действие на организм, а определяется своеобразное специфическое действие, выражающееся в явлении возбуждения в блуждающем нерве.

При действии ЭМП, особенно радиоволн, первоначальные проявления возникают в тканях, отдельных органах, в связи непосредственным воздействием на них ЭМП энергии, далее изменения функционального состояния центральной нервной системы с нарушением нейрогуморальной регуляции, рефлекторные изменения со стороны ряда органов и систем, в т.ч. сердечно-сосудистой.

В клинической картине, в зависимости от интенсивности и продолжительности воздействия ЭМП радиоволн выделяют острые и хронические формы поражения организма.

Острое поражение, как правило, возникает только при авариях или грубом нарушении техники безопасности, когда работающий оказывается в мощном ЭМП.

При этом наблюдается повышение температуры тела (39-40 0 С), появляется одышка, ощущение ломоты в руках и ногах, мышечная слабость, головные боли, сердцебиение, повышение давления.

При хроническом воздействии ведущее место занимают функциональные нарушения центральной нервной и сердечно-сосудистой систем. Изменения нервной системы характеризуются проявлением астенических, невротических и вегетативных реакций. При этом больные предъявляют жалобы на общую слабость, быструю утомляемость, снижение работоспособности, расстройства сна, раздражительность, головную боль неопределенной локализации. Некоторых беспокоит боли в области сердца, иногда сжимающего характера с иррадиацией в левую руку и лопатку, одышка.

На фоне функциональных расстройств центральной нервной системы, развиваются нарушения сердечно-сосудистой системы. Как правило, у таких больных отмечаются снижение пульса и артериального давления, которые отличаются неустойчивостью и нередко обнаруживается асимметрия показателей артериального давления. При объективном исследовании выявляется увеличение границ сердца, приглушение тонов, нередко выслушивается систолический шум на верхушке сердца.

Эндокринно-обменные нарушения проявляются также на фоне функциональных расстройств центральной нервной системы. Нередко отмечаются сдвиги в функциональном состоянии щитовидной железы, в сторону повышении активности, при выраженных формах патологии нарушается деятельность половых желез. Могут проявляться нарушения со стороны желудочно-кишечного тракта, печени.

Воздействие ЭМП радиоволн сопровождается изменениями показателей периферической крови, причем нередко отмечаются фазовые изменения количества лейкоцитов, эритроцитов и гемоглобина (чаще лейкоцитоз, повышение эритроцитов и гемоглобина). Есть данные о повышении содержания холестерина и снижении количества хлоридов, о нарушении минерального обмена.

СВЧ-излучения мобильных телефонов воздействуют на головной мозг, зоны вестибулярного слухового анализатора, сетчатку глаза, увеличивает температуру кожи головы в зоне расположения антенны и температуру барабанной перепонки. Экспериментальные исследования на различных видах сотовых телефонов выявили повышение температуры кожи головы от 1,7 до 4,5 0 С.

ЭМП промышленной частоты (50Гц), источники которых широко распространены не только в различных отраслях промышленности, но и в быту, также влияют на здоровье человека. Неоднократные исследования показывают, что существует связь между возникновением болезни Альцгеймера (слабоумие), опухоли головного мозга, рака крови (особенно лейкемии у детей), различной степени неврологических нарушений и воздействием ЭМП (50Гц).

Защитные мероприятия при работе с источниками ЭМП.

Организационные мероприятия: как при проектировании, так и на действующих объектах должны быть предусмотрены меры по предотвращению попадания людей в зоны с высокой напряженностью ЭМП, создание санитарно-защитных зон вокруг антенных сооружений различного назначения.

Инженерно-технические мероприятия: электрогерметизация элементов схем, блоков, узлов установки в целом; защита рабочего места от облучения отражающими экранами (сплошные металлические или металлические сетки), поглощающими (из радиопоглощающих материалов) или удаление его на безопасное расстояние от источника излучения. Использование средств индивидуальной защиты в виде спецодежды, выполненной из металлизированной ткани, и защитных очков.

Лечебно-профилактические мероприятия: одним из важных мероприятий по профилактике заболеваний от воздействия ЭМП является организация и проведение предварительных и периодических медицинских осмотров работников в соответствии с приказом Минздрава России от 12.04 2011г. № 302н.

Врач по гигиене труда

ФБУЗ «Центр гигиены и эпидемиологии

в Чувашской Республике-Чувашии» В.А.Алексеев

Источник

Электромагнитные поля (ЭМП, ЭМИ) Определение и нормативы СанПиН

Электромагнитное поле (определение из БСЭ) — это особая форма материи, посредством которой осуществляется взаимодействие между электрически заряженными частицами. Исходя из этого определения не понятно, что является первичным – существование заряженных частиц или же наличие поля. Быть может только благодаря наличию электромагнитного поля частицы могут получать заряд. Также как и в истории с курицей и яйцом. Суть в том, что заряженные частицы и электромагнитное поле неотделимы друг от друга и друг без друга существовать не могут. Поэтому определение не даёт нам с вами возможности понять суть явления электромагнитного поля и единственное, что следует запомнить, что это особая форма материи! Теория электромагнитного поля была разработана Джеймсом Максвеллом в 1865 г.

Что такое электромагнитное поле? Можно представить себе, что мы живём в электромагнитной Вселенной, которая вся целиком и полностью пронизана электромагнитным полем, а различные частицы и вещества в зависимости от своего строения и свойств под воздействием электромагнитного поля приобретают положительный или отрицательный заряд, накапливают его, или же остаются электронейтральными. Соответственно электромагнитные поля можно разделить на два вида: статическое, то есть излучаемое заряженными телами (частицами) и неотъемлемое от них, и динамическое, распространяющееся в пространстве, будучи оторванным от источника, излучившего его. Динамическое электромагнитное поле в физике представляется в виде двух взаимноперпендикулярных волн: электрической (Е) и магнитной (Н).

Тот факт, что электрическое поле порождается переменным магнитным полем,а магнитное поле — переменным электрическим, приводит к тому, что электрические и магнитные переменные поля не существуют по-отдельности друг от друга. Электромагнитное поле неподвижных или равномерно движущихся заряженных частиц напрямую связано с самими частицами. При ускоренном движении этих заряженных частиц электромагнитное поле «отрывается» от них и существует независимо в форме электромагнитных волн, не исчезая с устранением источника.

Источники электромагнитных полей

Природные (естественные) источники электромагнитных полей

Магнитное поле Земли. Величина геомагнитного поля Земли меняется по земной поверхности от 35 мкТл на экваторе до 65 мкТл вблизи полюсов.

Электрическое поле Земли направлено нормально к земной поверхности, заряженной отрицательно относительно верхних слоев атмосферы. Напряжённость электрического поля у поверхности Земли составляет 120…130 В/м и убывает с высотой примерно экспоненциально. Годовые изменения ЭП сходны по характеру на всей Земле: максимальная напряжённость 150…250 В/м в январе-феврале и минимальная 100…120 В/м в июне-июле.

Атмосферное электричество – это электрические явления в земной атмосфере. В воздухе (ссылка) всегда имеются положительные и отрицательные электрические заряды – ионы, возникающие под действием радиоактивных веществ, космических лучей и ультрафиолетового излучения Солнца. Земной шар заряжен отрицательно; между ним и атмосферой имеется большая разность потенциалов. Напряжённость электрастатического поля резко возрастает во время гроз. Частотный диапазон атмосферных разрядов лежит между 100 Гц и 30 МГц.

Внеземные источники включают излучения за пределами атмосферы Земли.

Биологический электромагнитный фон. Биологические объекты, как и другие физические тела, при температуре выше абсолютного нуля излучают ЭМП в диапазоне 10 кГц – 100 ГГц. Это объясняется хаотическим движением зарядов – ионов, в теле человека. Плотность мощности такого излучения у человека составляет 10 мВт/см2, что для взрослого даёт суммарную мощность в 100 Вт. Человеческое тело также излучает ЭМП с частотой 300 ГГц с плотностью мощности около 0,003 Вт/м2.

Антропогенные источники электромагнитных полей

Антропогенные источники делятся на 2 группы:

Эта группа включает в себя все системы производства, передачи и распределения электроэнергии (линии электропередачи, трансформаторные подстанции, электростанции, различные кабельные системы), домашнюю и офисную электро- и электронную технику, в том числе и мониторы ПК, транспорт на электроприводе, ж/д транспорт и его инфраструктуру, а также метро, троллейбусный и трамвайный транспорт.

Уже сегодня электромагнитное поле на 18-32% территории городов формируется в результате автомобильного движения. Электромагнитные волны, возникающие при движении транспорта, создают помехи теле- и радиоприему, а также могут оказывать вредное воздействие на организм человека.

Источники высокочастотных излучений (от 3 кГц до 300 ГГц)

Особенностью облучения в городских условиях является воздействие на население как суммарного электромагнитного фона (интегральный параметр), так и сильных ЭМП от отдельных источников (дифференциальный параметр).

Источник

Электромагнитное поле как особый вид материи. Электромагнитные волны.

dark fb.4725bc4eebdb65ca23e89e212ea8a0ea dark vk.71a586ff1b2903f7f61b0a284beb079f dark twitter.51e15b08a51bdf794f88684782916cc0 dark odnoklas.810a90026299a2be30475bf15c20af5b

caret left.c509a6ae019403bf80f96bff00cd87cd

image023Электромагнитное поле как вид материи

Электромагнитное поле обладает энергией, массой и количеством движения, т. е. такими же атрибутами, что и вещество. Энергия в единице объема, занятого полем в вакууме, равна сумме энергий электрической и магнитной компонент поля и равна здесь, магнитная постоянная, Гн/м. Масса электромагнитного поля в единице объема равна частному от деления энергии поля Wэм на квадрат скорости распространения электромагнитной волны в вакууме, равной скорости света. Несмотря на малое значение массы поля по сравнению с массой вещества, наличие массы поля указывает на то, что процессы в поле являются процессами инерционными. Количество движения единицы объема электромагнитного поля определяется произведением массы единицы объема ноля на скорость распространения электромагнитной волны в вакууме.
Электрическое и магнитное поля могут быть изменяющимися и неизменными во времени. Неизменным в макроскопическом смысле электрическим полем является электростатическое поле, созданное совокупностью зарядов, неподвижных в пространстве и неизменных во времени. В этом случае существует электрическое поле, а магнитное отсутствует. При протекании постоянных токов по проводящим телам внутри и вне их существует электрическое и магнитное поля, не влияющие друг на друга, поэтому их можно рассматривать раздельно. В изменяющемся во времени поле электрическое и магнитное поля, как упоминалось, взаимосвязаны и обусловливают друг друга, поэтому их нельзя рассматривать раздельно.

Электромагнитная волна во многом схожа с механической волной, но есть и различия. Основное отличие состоит в том, что для распространения этой волны не нужна среда. Электромагнитная волна – результат распространения переменного электрического поля и переменного магнитного полей в пространстве, т.е. электромагнитного поля.

I. Электромагнитное поле создается ускоренно движущимися заряженными частицами. Его наличие относительно. Это особый вид материи, является совокупностью переменных электрического и магнитного полей.

II. Электромагнитная волна – распространение электромагнитного поля в пространстве.

Схема распространения электромагнитной волны представлена на рисунке. Необходимо запомнить, что вектора напряженности электрического поля, магнитной индукции и скорости распространения волны взаимно перпендикулярны.

image024

III.

image025

Этапы создания теории электромагнитной волны и ее практического подтверждения.

· Майкл Фарадей (1831 г.)

Он претворил свой девиз в жизнь. Превратил магнетизм

·

image026

Максвелл Джеймс Клерк (1864 г.)

Ученый-теоретик вывел уравнения, которые носят

его имя. Из этих уравнений следует, что переменное

магнитное поле создает вихревое электрическое поле,

а оно создает переменное магнитное поле.

Кроме того, в его уравнениях была постоянная величина – это скорость света в вакууме. Т.Е. из этой теории следовало, что электромагнитная волна распространяется в пространстве со скоростью света в вакууме. Поистине гениальная работа была оценена многими учеными того времени, а А. Эйнштейн говорил, что самым увлекательным во время его учения была теория Максвелла.

640 1

image027

· Генрих Герц (1887 г.)

Генрих Герц родился болезненным ребенком, но стал очень

сообразительным учеником. Ему нравились все предметы,

которые изучал. Будущий ученый любил писать стихи,

работать на токарном станке.После окончания гимназии Герц

поступил в высшее техническое училище, но не пожелал быть

узким специалистом и поступил в Берлинский университет,

чтобы стать ученым. После поступления в университет Генрих

Герц стремиться заниматься в физической лаборатории, но для этого необходимо

было заниматься решением конкурсных задач. И он взялся за решение следующей задачи: обладает ли электрический ток кинетической энергией? Эта работа была рассчитана на 9 месяцев, но будущий ученый решил ее через три месяца. Правда, отрицательный результат, с современной точки зрения неверен. Точность измерения необходимо было увеличить в тысячи раз, что тогда не представлялось возможным.

Еще будучи студентом, Герц защитил докторскую диссертацию на «отлично» и получил звание доктора. Ему было 22 года. Ученый успешно занялся теоретическими исследованиями. Изучая теорию Максвелла, он показал высокие экспериментальные навыки, создал прибор, который называется сегодня антенной и с помощью передающей и приемной антенн осуществил создание и прием. Он понял, что скорость распространения этих волн конечна и равна скорости распространения света в вакууме. После изучения свойств электромагнитных волн он доказал, что они аналогичны свойствам света.

К сожалению, эта робота окончательно подорвала здоровье ученого. Сначала отказали глаза, затем заболели уши, зубы и нос. Вскоре он скончался.

Генрих Герц завершил огромный труд, начатый Фарадеем. Максвелл преобразовал представления Фарадея в математические формулы, а Герц превратил математические образы в видимые и слышимые электромагнитные волны.

Слушая радио, просматривая телевизионные передачи, мы должны помнить об этом человеке.

image028А. С. Попов

Не случайно единица частоты колебаний названа в честь Герца, и совсем не случайно первыми словами, переданными русским физиком А.С. Поповым с помощью беспроводной связи, были «Генрих Герц», зашифрованные азбукой Морзе.

Попов совершенствовал приемную и передающую антенну и вначале была осуществлена связь на расстоянии 250 м, затем на 600 м. И в 1899 году ученый установил радиосвязь на расстоянии 20 км, а в 1901 – на 150 км. В 1900 году радиосвязь помогла провести спасательные работы в Финском заливе. В 1901 году итальянский инженер Г. Маркони осуществил радиосвязь через Атлантический океан.

Задание 1. Ознакомиться с материалом и сделать конспект в рабочую тетрадь

Задание 2. Сопоставьте номер вопросаответ

image029

Задание 3.Ответить письменно на вопросы:

1. Что такое электромагнитная волна?

2. Кто создал теорию электромагнитной волны?

3. Кто изучил свойства электромагнитных волн?

4. Что является причиной излучения электромагнитной волны?

5. Где используются электромагнитные волны?

Источник

Adblock
detector