электромагнитное поле для чайников

Магнитное поле

Магнитное поле играет очень большую роль в электротехнике и электронике. Без магнитного поля не функционировали бы герконы, электромагнитные реле, соленоиды, катушки индуктивности, дроссели, трансформаторы, двигатели, динамики, генераторы электрической энергии да и вообще много чего.

Природа магнетизма

Согласно одной из легенд, когда-то давным-давно жил в Греции пастух по имени Магнес. И вот шел он как-то со своим стадом овец, присел на камень и обнаружил, что конец его посоха, сделанный из железа, стал притягиваться к этому камню. С тех пор стали называть этот камень магнетит в честь Магнеса. Этот камень представляет из себя оксид железа.

%D0%BC%D0%B0%D0%B3%D0%BD%D0%B5%D1%82%D0%B8%D1%82

Если такой камень положить на деревянную доску на воду или подвесить на нитке, то он всегда выстраивался в определенном положении. Один его конец всегда показывал на СЕВЕР, а другой — на ЮГ.

%D0%BC%D0%B0%D0%B3%D0%BD%D0%B5%D1%82%D0%B8%D1%82 %D0%BD%D0%B0 %D0%B2%D0%BE%D0%B4%D0%B5

Этим свойством камня пользовались древние цивилизации. Поэтому, это был своего рода первый компас. Потом уже стали обтачивать такой камень и делать из разные фигурки. Например, так выглядел китайский древний компас, ложка которого была сделана из того самого магнетита. Ручка у этой ложки всегда показывала на ЮГ.

%D0%BA%D0%B8%D1%82%D0%B0%D0%B9%D1%81%D0%BA%D0%B8%D0%B9 %D0%B4%D1%80%D0%B5%D0%B2%D0%BD%D0%B8%D0%B9 %D0%BA%D0%BE%D0%BC%D0%BF%D0%B0%D1%81

Ну а далее дело шло за практичностью и маленькими габаритами. Из магнетита вытачивали маленькие стрелки, которые подвешивали на тонкую иглу посередине. Так стали появляться первые малогабаритные компасы.

%D0%B4%D1%80%D0%B5%D0%B2%D0%BD%D0%B8%D0%B9 %D0%BA%D0%BE%D0%BC%D0%BF%D0%B0%D1%81 %D1%81%D0%BE %D1%81%D1%82%D1%80%D0%B5%D0%BB%D0%BA%D0%BE%D0%B9

Древние цивилизации, конечно, не знали еще что такое север и юг. Поэтому, одну сторону магнетита они назвали северным полюсом (North), а противоположный конец — южным (South). Названия на английском очень легко запомнить, если кто смотрел американский мультфильм «Южный парк», он же Сауз (South) парк).

%D1%81%D0%B0%D1%83%D0%B7 %D0%BF%D0%B0%D1%80%D0%BA

Магнитные линии и магнитный поток

Вокруг магнита экспериментальным путем были обнаружены магнитные силовые линии. Эти магнитные линии создают так называемое магнитное поле.

%D0%BB%D0%B8%D0%BD%D0%B8%D0%B8 %D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%BE%D0%B3%D0%BE %D0%BF%D0%BE%D0%BB%D1%8F

Как вы могли заметить на рисунке, концентрация магнитных силовых линий на самых краях магнита намного больше, чем в его середине. Это говорит о том, что магнитное поле является более сильным именно на краях магнита, а в его середине практически равна нулю. Направлением магнитных силовых линий считается направление от севера к югу.

Ошибочно считать, что магнитные силовые линии начинают свое движение от северного полюса и заканчивают свой век на южном. Это не так. Магнитные линии — они замкнуты и непрерывны. В магните это будет выглядеть примерно так.

%D0%B7%D0%B0%D0%BC%D0%BA%D0%BD%D1%83%D1%82%D1%8B%D0%B5 %D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D1%8B%D0%B5 %D0%BB%D0%B8%D0%BD%D0%B8%D0%B8

Если приблизить два разноименных полюса, то произойдет притягивание магнитов

%D0%B2%D0%B7%D0%B0%D0%B8%D0%BC%D0%BE%D0%B4%D0%B5%D0%B9%D1%81%D1%82%D0%B2%D0%B8%D0%B5 %D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D1%8B%D1%85 %D0%BF%D0%BE%D0%BB%D0%B5%D0%B9

Если же приблизить одноименными полюсами, то произойдет их отталкивание

%D0%B2%D0%B7%D0%B0%D0%B8%D0%BC%D0%BE%D0%B4%D0%B5%D0%B9%D1%81%D1%82%D0%B2%D0%B8%D0%B5 %D1%80%D0%B0%D0%B7%D0%BD%D0%BE%D0%B8%D0%BC%D0%B5%D0%BD%D0%BD%D1%8B%D1%85 %D0%BF%D0%BE%D0%BB%D1%8E%D1%81%D0%BE%D0%B2 %D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%B0

Итак, ниже важные свойства магнитных силовых линий.

Магнитные силовые линии, которые образуют магнитное поле, называют также магнитным потоком.

Итак, давайте рассмотрим два рисунка и ответим себе на вопрос, где плотность магнитного потока будет больше? На рисунке «а» или на рисунке «б»?

%D0%BF%D0%BB%D0%BE%D1%82%D0%BD%D0%BE%D1%81%D1%82%D1%8C %D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%BE%D0%B3%D0%BE %D0%BF%D0%BE%D1%82%D0%BE%D0%BA%D0%B0

Видим, что на рисунке «а» мало силовых магнитных линий, а на рисунке «б» их концентрация намного больше. Отсюда можно сделать вывод, что плотность магнитного потока на рисунке «б» больше, чем на рисунке «а».

В физике формула магнитного потока записывается как

%D1%84%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D0%B0 %D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%BE%D0%B3%D0%BE %D0%BF%D0%BE%D1%82%D0%BE%D0%BA%D0%B0

Ф — магнитный поток, Вебер

В — плотность магнитного потока, Тесла

а — угол между перпендикуляром n (чаще его зовут нормалью) и плоскостью S, в градусах

S — площадь, через которую проходит магнитный поток, м 2

%D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D1%8B%D0%B9 %D0%BF%D0%BE%D1%82%D0%BE%D0%BA

Что же такое 1 Вебер? Один вебер — это магнитный поток, который создается полем индукцией 1 Тесла через площадку 1м 2 расположенной перпендикулярно направлению магнитного поля.

Напряженность магнитного поля

Формула напряженности

Слышали ли вы когда-нибудь такое выражение: «напряженность между ними все росла и росла». То есть по сути напряженность — это что-то невидимое, какая-то сдерживающая сила, энергия. Здесь почти все то же самое. Напряженностью магнитного поля также часто называют силой магнитного поля. Напряженность магнитного поля напрямую зависит от плотности магнитного потока и выражается формулой

%D0%BD%D0%B0%D0%BF%D1%80%D1%8F%D0%B6%D0%B5%D0%BD%D0%BD%D0%BE%D1%81%D1%82%D1%8C %D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%BE%D0%B3%D0%BE %D0%BF%D0%BE%D0%BB%D1%8F

H — напряженность магнитного поля, Ампер/метр

B — плотность магнитного потока, Тесла

Эта формула работает только тогда, когда между витками катушки находится воздух, либо вакуум. Более крутая формула выглядит вот так.

%D0%BD%D0%B0%D0%BF%D1%80%D1%8F%D0%B6%D0%B5%D0%BD%D0%BD%D0%BE%D1%81%D1%82%D1%8C %D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%BE%D0%B3%D0%BE %D0%BF%D0%BE%D0%BB%D1%8F %D0%B2 %D0%B2%D0%B5%D1%89%D0%B5%D1%81%D1%82%D0%B2%D0%B5 %D1%84%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D0%B0

μ — это относительная магнитная проницаемость.

У разных веществ она разная

%D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%B0%D1%8F %D0%BF%D1%80%D0%BE%D0%BD%D0%B8%D1%86%D0%B0%D0%B5%D0%BC%D0%BE%D1%81%D1%82%D1%8C %D0%B2%D0%B5%D1%89%D0%B5%D1%81%D1%82%D0%B2

Напряженность магнитного поля проводника с током

Итак, имеем какой-либо проводник, по которому течет электрический ток.

%D0%BD%D0%B0%D0%BF%D1%80%D1%8F%D0%B6%D0%B5%D0%BD%D0%BD%D0%BE%D1%81%D1%82%D1%8C %D0%BF%D1%80%D0%BE%D0%B2%D0%BE%D0%B4%D0%BD%D0%B8%D0%BA%D0%B0 %D1%81 %D1%82%D0%BE%D0%BA%D0%BE%D0%BC

Для того, чтобы вычислить напряженность магнитного поля на каком-то расстоянии от проводника при условии, что проводник находится в воздушном пространстве либо в вакууме, достаточно воспользоваться формулой

%D0%BD%D0%B0%D0%BF%D1%80%D1%8F%D0%B6%D0%B5%D0%BD%D0%BD%D0%BE%D1%81%D1%82%D1%8C %D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%BE%D0%B3%D0%BE %D0%BF%D0%BE%D0%BB%D1%8F %D0%BF%D1%80%D0%BE%D0%B2%D0%BE%D0%B4%D0%BD%D0%B8%D0%BA%D0%B0 %D1%81 %D1%82%D0%BE%D0%BA%D0%BE%D0%BC

H — напряженность магнитного поля, Ампер/метр

I — сила тока, текущая через проводник, Ампер

r — расстояние до точки, в которой измеряется напряженность, метр

Магнитное поле проводника с током

Оказывается, если через какой-либо проводник пропустить электрический ток, то вокруг проводника образуется магнитное поле.

%D0%BF%D1%80%D0%B0%D0%B2%D0%B8%D0%BB%D0%BE %D0%B1%D1%83%D1%80%D0%B0%D0%B2%D1%87%D0%B8%D0%BA%D0%B0

Здесь можно вспомнить знаменитое правило буравчика, но для наглядности я лучше буду использовать правило самореза, так как почти все хоть раз в жизни ввинчивали либо болт, либо саморез.

%D1%81%D0%B0%D0%BC%D0%BE%D1%80%D0%B5%D0%B7

Ввинчиваем по часовой стрелке — саморез идет вниз. В нашем случае он показывает направление электрического тока. Движение наших рук показывает направление линий магнитного поля. Все то же самое, когда мы начинаем откручивать саморез. Он начинает вылазить вверх, то есть в нашем случае показывает направление электрического тока, а наша рука в этом время рисует в воздухе направление линий магнитного поля.

Также часто в учебниках физики можно увидеть, что направление электрического тока от нас рисуют кружочком с крестиком, а к нам — кружочком с точкой. В этом случае опять представляем себе саморез и уже в голове увидим направление магнитного поля.

%D0%BF%D1%80%D0%B0%D0%B2%D0%B8%D0%BB%D0%BE %D1%81%D0%B0%D0%BC%D0%BE%D1%80%D0%B5%D0%B7%D0%B0

Как думаете, что будет если мы сделаем вот такую петельку из провода? Что изменится в этом случае?

%D1%81%D1%83%D0%BC%D0%BC%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5 %D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%BE%D0%B3%D0%BE %D0%BF%D0%BE%D0%BB%D1%8F

Давайте же рассмотрим этот случай более подробно. Так в этой плоскости оба проводника создают магнитное поле, то по идее они должны отталкиваться друг от друга. Но если они хорошо закреплены, то начинается самое интересное. Давайте рассмотрим вид сверху, как это выглядит.

%D1%81%D1%83%D0%BC%D0%BC%D0%B0 %D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D1%8B%D0%B9 %D0%BF%D0%BE%D0%BB%D0%B5%D0%B9

Как вы можете заметить, в области, где суммируются магнитные силовые линии плотность магнитного потока прям зашкаливает.

Соленоид

А что если сделать много-много таких петелек? Взять какую-нибудь круглую бобину, намотать на нее провод и потом убрать бобину. У нас должно получится что-то типа этого.

%D0%BF%D1%80%D0%BE%D1%81%D1%82%D0%B0%D1%8F%20%D0%BA%D0%B0%D1%82%D1%83%D1%88%D0%BA%D0%B0

Если подать постоянное напряжение на такую катушку, магнитные силовые линии будут выглядеть вот так.

solenoid

Вы только посмотрите, какая бешеная плотность магнитного потока внутри такой катушки! Получается, что от каждой петельки магнитное поле суммируется, что в итоге дает такую плотность магнитного потока. Такую катушку также называют катушкой индуктивности или соленоидом.

Вот также схема, показывающая как магнитные силовые линии складываются в соленоиде.

%D1%81%D0%BE%D0%BB%D0%B5%D0%BD%D0%BE%D0%B8%D0%B4 %D0%BF%D1%80%D0%B8%D0%BD%D1%86%D0%B8%D0%BF %D1%80%D0%B0%D0%B1%D0%BE%D1%82%D1%8B

Плотность магнитного потока зависит от того, какая сила тока проходит через соленоид. Чтобы увеличить плотность магнитного потока, достаточно поверх витков намотать еще больше витков и вставить сердечник из специального материала — феррита.

%D0%BC%D0%BD%D0%BE%D0%B3%D0%BE%D0%BE%D0%B1%D0%BC%D0%BE%D1%82%D0%BE%D1%87%D0%BD%D0%B0%D1%8F %D0%BA%D0%B0%D1%82%D1%83%D1%88%D0%BA%D0%B0

Если в электрических цепях есть такое понятие, как ЭДС — электродвижущая сила, то и в магнитных цепях есть свой аналог — МДС — магнитодвижущая сила. Магнитодвижущая сила выражается в виде тока, протекающего через катушку из N витков и выражается в Амперах-витках.

%D1%84%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D0%B0 %D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BE %D0%B4%D0%B2%D0%B8%D0%B6%D1%83%D1%89%D0%B5%D0%B9 %D1%81%D0%B8%D0%BB%D1%8B

I — это сила тока в катушке, Амперы

N — количество витков катушки, штуки)

Также советую посмотреть очень простое и интересное видео про магнитное поле.

Похожие статьи по теме «магнитное поле»

Источник

Электромагнетизм для самых маленьких, и не только

Если говорить об «электромагнетизме Максвелла», то народ в целом делится на две группы: первые считают, что знают на эту тему если не всё, то вполне достаточно. Потому что ничего сложного там нет. Вторые не совсем знают эту тему и не хотят знать. Так как непонятные формулы и вообще.

Натыкаясь в разных местах на то, как объясняются некоторые моменты: с одной стороны убедительно, с другой сомнительно, с третьей неверно, с четвертой, в принципе и верно… думаю, стоит на всякий случай приглядеться им, а так как начать придется от оснований, то и «самые маленькие» могут поднянуться без боязни формул.

Прежде всего нас будет интересовать, как образуются и распространяются электромагнитные волны от «электрических» и «магнитных» полей, а посему сразу лакмусовая бумажка:
27ccd3219b3e4d1daad6b6040ef986b7

Если эта схема вам прекрасно знакома и не вызывает рефлекса кое-что пояснить и дополнить, чтобы не ввела других в заблуждение, то прошу под кат. Если она вам прекрасно знакома, и вы поняли, что там требуется допояснять, то гуляйте дальше) Пост не для вас.
Если схема не очень знакома или понятна, можете заглянуть.

Чтобы идти по порядку, начнем с далека, а именно — возьмем и рассмотрим окружность. Казалось бы, о чем тут говорить, фигуры проще не бывает. С детства мы привыкли рисовать, взяв точку-центр на бумаге и очертив все точки на одинаковом от центра расстоянии.
Потом мы узнаем другие способы «нарисовать» круг. Казалось бы, совсем разные принципы, а ведут к одному и тому же.

Возьмем один из них, один из полезнейших на мой взгляд:

image loader

Что это было? Ничто иное, как дифференциальное уравнение окружности. Смысл которого звучит так:
«Есть две взаимодействующие сущности. Первая прикладывает силы, чтобы усилить вторую. Вторая, по мере сил, пытается ослабить первую.»

Эту динамику мы можем записать в форме самой простой системы дифф. уравнений в мире (не считая экспоненты)

image loader

Образно говоря, в любой момент очень короткого периода одинаковой длины «dt», изменение «у» (т.е. «dy») зависит от величины «x».
При этом в этот же момент изменение «x» (т.е. «dx») зависит от величины «y».
Оба уравнения аналогичны уравнению механики макромасштабов — «расстояние = скорость * время». Только в данном случае отрезки «dt» очень малы (а точнее, бесконечно малы, но сути не меняет).

При чем все эти зависимости линейные, и об окружности им ничего не известно. А принцип инь-ян проявляется в противостоящих знаках воздействия одного элемента на другой.
Если система находится не в равновесии, т.е. «x» и «y» не равны нулю, это взаимодействие, складывая все микро-отрезки времени, приведет к бесконечному циклу колебаний.

Из этого же представления мы получаем как результат — функции синус и косинус, т.к. «х» и «у» ими соответственно и являются (с точностью до масштаба).
Отсюда же сразу понятно, почему производная синуса — косинус, косинуса — минус синус… и почему цепочка производных зацикливается. И тянется в бесконечность…

Если посмотреть на «x» и «y» (синус и косинус) на одной оси, то они конечно сдвинуты на пи/2
image loader

Итак, к чему все это.

Вернемся к электромагнитным волнам. Пустое 3-хмерное пространство. Как известно, два вида полей, электрическое и магнитное, проявляют схожую зависимость между собой.
Грубо говоря, изменение интенсивности магнитного поля порождает разницу электрического потенциала (закон Фарадея). И так же изменение электрического потенциала в точке пространства порождает магнитное поле (закон Ампера).
В уравнениях Максвелла эти зависимости между «E» (электрическое поле) и «B» (магнитное поле) выглядят так
image loader
(еще два дополнительных уравнения сводятся к «закону сохранения энергии», и нам не будут интересны)

Прежде чем вникать в детали, следует заметить, что эта система дифф.ур. очень похожа на дифф. ур. инь-яна. Главные элементы здесь — «E», «B» и «t», на остальные параметры можно не обращать внимания, например «J» это внешнее электрическое воздействие, которое не будем рассматривать, а остальное можно принять за константы и забыть.
Кроме этого надо заметить, что и «Е», и «B», это не просто два числа, а поля трехмерных векторов в каждой точке трехмерного пространства. Но это тоже в данном случае ничего кардинально не меняет.

Зато важный элемент — треугольник с крестиком перед «Е» и «B», т.н. «ротор» поля. Из-за него как раз рождаются определенные сомнения и вопросы. К ротору вернемся чуть позже, посмотрим, что за вопросы и неясности вызывает.

Итак, мы видели, что круговая динамика это две связанные величины, которые на одном графике от времени, представляют собой две волны со сдвигом пи/2.
Таким же образом из начального возмущения распространяется электромагнитная волна, через зацикленность интенсивностей и их изменений. Изменение электрического поля порождает магнитное поле, которое, увеличиваясь (=изменяясь), порождает обратное электрическое поле, которое… и т.д. Это классическое (и верное) объяснение, известное наверное каждому.
Но… посмотрим на схему с которой все началось:
27ccd3219b3e4d1daad6b6040ef986b7

Сдвиг… где тут сдвиг? Векторы, обозначающие интенсивности полей, колеблются в одной фазе!
Ошибка? Смотрим на вики. Там то же самое. Ошибка на вики? Смотрим гугл. Что там у нас?
Какие-то непонятные споры… Должен быть сдвиг или нет? Консенсуса нет. Одни говорят «сдвиг должен быть, там везде все неправильно». Другие «доказывают», что правильно. Шок, как так? Идеальная и элегантная теория, которой 300 лет в обед, и еще какие-то неясности?

From my understanding Vern is correct. Your citation of Maxwell’s equation is a good idea, but you are incomplete. In free space you have no currents and no charges so Maxwell’s 4 equations simplify down to 2 equations (considering a single spatial dimension):

So when the temporal derivative of one is maximal the spatial derivative of the other is minimal (maximally negative). If you consider a simple single-frequency sinusoidal plane wave you find that this happens for E and B in phase. In the above equations:

E = Emax cos(kx-wt)
B = Bmax cos(kx-wt)

Вот, вышло, что должны быть в фазе. И еще в разных местах в интернете другие вариации на эту тему.

Правильно ли? Нет, неправильно.

Почему неправильно? Потому что ротор поля это не его производная по пространству!
dE/dx — так нельзя.

В других местах «упрощают» пространство до двумерного другими способами и получают тот же результат. Так тоже нельзя, ротору нужны 3 измерения (не меньше).

Посмотрим, что за это несчастный ротор. Думаю, вещь знакомая со школы.
Дело в том, что изменение электрического поля порождает не абы какое магнитное поле, а «закрученное». Типичный пример, изначальный ток по проводу, порождающий изменение электропотенциала вдоль линии провода, создает закрученное вокруг провода магнитное поле.
image loader
То же самое с изменяющимся потенциалом магнитного поля, если изменение имеет векторную направленность, электрическое напряжение будет закручено вокруг него.
image loader

Поэтому ротор поля это не дифференциал, это специальный способ выразить его значение (наподобие смены системы координат), иначе говоря, ротор — это и есть значение поля.

Как в итоге выглядит каскадная зацикленная волна таких закрученностей?
Довольно сложно описать…
Совсем упрощенная схема выглядит так
image loader
Но это большое упрощение, такой картинки с колечками вообще не возникает, т.к. все находится во вращении и это скорее спирали, вращающиеся вокруг друг друга. Но при этом и не спирали, т.к. расходятся в пространстве, и взаимосложение даст еще более дивную картину.

Однако в любом случае… сдвиг на пи/2 есть.

Что же насчет классического рисунка? Классический рисунок представляет собой пример однонаправленной волны линейной поляризации… Что-то похожее на лазер. Такую поляризованную волну можно получить, прибавляя к электро- волне круговой поляризации ее зеркальное отражение (стереоизомер). Получится ли после такого сложения волна с колебаниями электропотенциала и магнитной интенсивности в одной фазе?

Следует помнить, что стереоизомеры вращательно-поляризованных волн не симметричны, т.к. векторы сопуствующего магнитного поля всегда повернуты под прямым углом в одну и ту же сторону.

А поэтому… вполне возможно? Или вполне возможно нет?

Источник

Магнетизм для чайников: основные формулы, определение, примеры

d3d6365da60b4ef3b0824c519cde4365

Часто бывает, что задачу не удается решить из-за того, что под рукой нет нужной формулы. Выводить формулу с самого начала – дело не самое быстрое, а у нас на счету каждая минута.

Ниже мы собрали вместе основные формулы по теме «Электричество и Магнетизм». Теперь, решая задачи, вы сможете пользоваться этим материалом как справочником, чтобы не терять время на поиски нужной информации.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Магнетизм: определение

Магнетизм – это взаимодействие движущихся электрических зарядов, происходящее посредством магнитного поля.

Поле – особая форма материи. В рамках стандартной модели существует электрическое, магнитное, электромагнитные поля, поле ядерных сил, гравитационное поле и поле Хиггса. Возможно, есть и другие гипотетические поля, о которых мы пока что можем только догадываться или не догадываться вовсе. Сегодня нас интересует магнитное поле.

Магнитная индукция

Так же, как заряженные тела создают вокруг себя электрическое поле, движущиеся заряженные тела порождают магнитное поле. Магнитное поле не только создается движущимися зарядами (электрическим током), но еще и действует на них. По сути магнитное поле можно обнаружить только по действию на движущиеся заряды. А действует оно на них с силой, называемой силой Ампера, о которой речь пойдет позже.

aHR0cDovL3d3dy5saXZlc2NpZW5jZS5jb20vaW1hZ2VzL2kvMDAwLzA4MS8wMDQvb3JpZ2luYWwvbWFnbmV0aWMtZmllbGQuanBnИзображение магнитного поля при помощи силовых линий

Прежде чем мы начнем приводить конкретные формулы, нужно рассказать про магнитную индукцию.

Магнитная индукция – это силовая векторная характеристика магнитного поля.

Она обозначается буквой B и измеряется в Тесла (Тл). По аналогии с напряженностью для электрического поля Е магнитная индукция показывает, с какой силой магнитное поле действует на заряд.

Кстати, вы найдете много интересных фактов на эту тему в нашей статье про теорию магнитного поля и интересные факты о магнитном поле Земли.

Как определять направление вектора магнитной индукции? Здесь нас интересует практическая сторона вопроса. Самый частый случай в задачах – это магнитное поле, создаваемое проводником с током, который может быть либо прямым, либо в форме окружности или витка.

Для определения направления вектора магнитной индукции существует правило правой руки. Приготовьтесь задействовать абстрактное и пространственное мышление!

Если взять проводник в правую руку так, что большой палец будет указывать на направление тока, то загнутые вокруг проводника пальцы покажут направление силовых линий магнитного поля вокруг проводника. Вектор магнитной индукции в каждой точке будет направлен по касательной к силовым линиям.

2000px Manoderecha.svg

Сила Ампера

Представим, что есть магнитное поле с индукцией B. Если мы поместим в него проводник длиной l, по которому течет ток силой I, то поле будет действовать на проводник с силой:

Screenshot 1

Это и есть сила Ампера. Угол альфа – угол между направлением вектора магнитной индукции и направлением тока в проводнике.

Направление силы Ампера определяется по правилу левой руки: если расположить левую руку так, чтобы в ладонь входили линии магнитной индукции, а вытянутые пальцы указывали бы направление тока, отставленный большой палец укажет направление силы Ампера.

sila ampera

Сила Лоренца

Мы выяснили, что поле действует на проводник с током. Но если это так, то изначально оно действует отдельно на каждый движущийся заряд. Сила, с которой магнитное поле действует на движущийся в нем электрический заряд, называется силой Лоренца. Здесь важно отметить слово «движущийся», так на неподвижные заряды магнитное поле не действует.

Итак, частица с зарядом q движется в магнитном поле с индукцией В со скоростью v, а альфа – это угол между вектором скорости частицы и вектором магнитной индукции. Тогда сила, которая действует на частицу:

Screenshot 2

Как определить направление силы Лоренца? По правилу левой руки. Если вектор индукции входит в ладонь, а пальцы указывают на направление скорости, то отогнутый большой палец покажет направление силы Лоренца. Отметим, что так направление определяется для положительно заряженных частиц. Для отрицательных зарядов полученное направление нужно поменять на противоположное.

0057e855d7676fc334bf8211481c3911df61a62d

Если частица массы m влетает в поле перпендикулярно линиям индукции, то она будет двигаться по окружности, а сила Лоренца будет играть роль центростремительной силы. Радиус окружности и период обращения частицы в однородном магнитном поле можно найти по формулам:

Screenshot 3

Взаимодействие токов

Рассмотрим два случая. Первый – ток течет по прямому проводу. Второй – по круговому витку. Как мы знаем, ток создает магнитное поле.

В первом случае магнитная индукция провода с током I на расстоянии R от него считается по формуле:

Screenshot 4

Мю – магнитная проницаемость вещества, мю с индексом ноль – магнитная постоянная.

Во втором случае магнитная индукция в центре кругового витка с током равна:

Screenshot 5

Также при решении задач может пригодиться формула для магнитного поля внутри соленоида. Соленоид – это катушка, то есть множество круговых витков с током.

solenoid magnetic field

Пусть их количество – N, а длина самого соленоилда – l. Тогда поле внутри соленоида вычисляется по формуле:

Screenshot 6

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Магнитный поток и ЭДС

Если магнитная индукция – векторная характеристика магнитного поля, то магнитный поток – скалярная величина, которая также является одной из самых важных характеристик поля. Представим, что у нас есть какая-то рамка или контур, имеющий определенную площадь. Магнитный поток показывает, какое количество силовых линий проходит через единицу площади, то есть характеризует интенсивность поля. Измеряется в Веберах (Вб) и обозначается Ф.

Screenshot 7

S – площадь контура, альфа – угол между нормалью (перпендикуляром) к плоскости контура и вектором В.

img13

При изменении магнитного потока через контур в контуре индуцируется ЭДС, равная скорости изменения магнитного потока через контур. Кстати, подробнее о том, что такое электродвижущая сила, вы можете почитать в еще одной нашей статье.

Screenshot 8

По сути формула выше – это формула для закона электромагнитной индукции Фарадея. Напоминаем, что скорость изменения какой-либо величины есть не что иное, как ее производная по времени.

Для магнитного потока и ЭДС индукции также справедливо обратное. Изменение тока в контуре приводит к изменению магнитного поля и, соответственно, к изменению магнитного потока. При этом возникает ЭДС самоиндукции, которая препятствует изменению тока в контуре. Магнитный поток, который пронизывает контур с током, называется собственным магнитным потоком, пропорционален силе тока в контуре и вычисляется по формуле:

Screenshot 9

L – коэффициент пропорциональности, называемый индуктивностью, который измеряется в Генри (Гн). На индуктивность влияют форма контура и свойства среды. Для катушки с длиной l и с числом витков N индуктивность рассчитывается по формуле:

Screenshot 10

Формула для ЭДС самоиндукции:

Screenshot 11

Энергия магнитного поля

Screenshot 12

Объемная плотность энергии поля:

Screenshot 13

Источник

Adblock
detector