электрическое поле заряженной пластины
Учебники
Журнал «Квант»
Общие
Закажите стакрил или наливной акрил на сайте Ecovanna-spb
§9. Электрическое поле и его свойства
9.11 Примеры расчета потенциалов электростатических полей.
Поле равномерно заряженной сферы.
Пусть электрическое поле создается зарядом Q, равномерно распределенным по поверхности сферы радиуса R (Рис. 190). Для вычисления потенциала поля в произвольной точке, находящейся на расстоянии r от центра сферы, необходимо вычислить работу, совершаемую полем при перемещении единичного положительного заряда от данной точки до бесконечности. Ранее мы доказали, что напряженность поля равномерно заряженной сферы вне ее эквивалентно полю точечного заряда, расположенного в центре сферы. Следовательно, вне сферы потенциал поля сферы будет совпадать с потенциалом поля точечного заряда
В частности, на поверхности сферы потенциал равен \(
Итак, распределение потенциала поля равномерно заряженной сферы имеет вид (Рис. 191)
Обратите внимание, поле внутри сферы отсутствует, а потенциал отличен от нуля! Этот пример является яркой иллюстрацией, того, что потенциал определяется значением поля от данной точки до бесконечности.
Поле равномерно заряженного кольца.
Вычислим потенциал поля, создаваемого зарядом Q, равномерно распределенным по тонкому кольцу радиуса R, причем ограничимся расчетом потенциала поля только на оси кольца (Рис. 192). Ранее мы вычислили напряженность поля на оси кольца, как функцию расстояния до его центра. Поэтому для вычисления потенциала можно, в принципе, подсчитать работу, совершаемую полем при перемещении заряда от данной точки до бесконечности. Однако, в данном случае проще воспользоваться принципом суперпозиции для потенциала поля. Для этого мысленно разобьем кольцо на малые участки, несущие заряд ΔQk. Тогда в точке, находящейся на расстоянии z от его центра, этот заряд создает поле, потенциал которого равен
Так как все точки кольца находятся на одинаковом расстоянии \(
r = \sqrt
График этой функции показан на рисунке. Там же повторен график зависимости напряженности поля кольца на его оси от расстояния до центра кольца. Напомним, что значения потенциала φ(z0) в точке с координатой z0 численно равно площади под графиком зависимости E(z) в интервале от z0 до \(
Обратите внимание – так как проекция вектора напряженности не изменяет свой знак, то функция φ(z) является монотонной.
Поле равномерно заряженной бесконечной пластины.
Ранее мы показали, что электрическое поле, создаваемое бесконечной равномерно заряженной пластиной является однородным, то есть напряженность поля одинакова во всех точках, причем вектор напряженности направлен перпендикулярно плоскости, а его модуль равен \(
При традиционном выборе нулевого уровня потенциала \(
Поэтому следует воспользоваться произволом выбора нулевого уровня. Достаточно выбрать произвольную точку с координатой z = z0, и приписать ей произвольное значение потенциала φ(z0) = φ(0) (Рис. 195). Теперь, чтобы вычислить значение потенциала в произвольной точке φ(z), можно воспользоваться соотношением между напряженностью и потенциалом поля \(
из которого следует искомая зависимость потенциала от координаты (при z > 0)
В частности, можно задать произвольное значение потенциала самой пластины, то есть положить при z = z0 = 0 φ = φ(0). Тогда значение потенциала в произвольной точке определяется функцией
график которой показан на рисунке 196.
То, что потенциал относительно бесконечности оказался бесконечно большим, вполне очевидно – ведь и бесконечная пластина обладает бесконечно большим зарядом. Как мы уже подчеркивали, такая система является идеализацией – бесконечных пластин не существует. В реальности все тела имеют конечные размеры, поэтому для них традиционный выбор нулевого потенциала возможен, правда в этом случае распределение поля может быть очень сложным. В рамках же рассматриваемой идеализации удобнее воспользоваться использованным нами выбором нулевого уровня.
Задание для самостоятельной работы.
Поле двух параллельных равномерно заряженных пластин.
Каждая равномерно заряженная пластина создает однородное поле, модуль напряженности которого равен \(
Складывая напряженности полей по принципу суперпозиции, получим, что в пространстве между пластинами напряженность поля \(
E = 2E_0 = \frac<\sigma><\varepsilon_0>\) вдвое превышает напряженность поля одной пластины (здесь поля отдельных пластин параллельны), а вне пластин поле отсутствует (здесь поля отдельных пластин противоположны).
Строго говоря, для пластин конечных размеров поле не является однородным, силовые линии поля пластин конечных размеров показаны на рисунке 199. Наиболее сильные отклонения от однородности наблюдаются вблизи краев пластин (часто эти отклонения называют краевыми эффектами). Однако, в области прилегающей к середине пластин поле с высокой степенью точности можно считать однородным, то есть в этой области можно пренебречь краевыми эффектами. Заметим, что погрешности такого приближения тем меньше, чем меньше отношение расстояния между пластинами к их размерам.
Для однозначного определения распределения потенциала поля, необходимо выбрать уровень нулевого потенциала. Будем считать, что потенциал равным нулю в плоскости расположенной по средине между пластинами, то есть, положим φ = 0 при z = 0.
Не смотря на произвол в выборе нулевого уровня потенциала, наш выбор может быть логически обоснован на основании симметрии системы. Действительно, рассматриваемая система зарядов зеркально повторяет себя при зеркальном отражении относительно плоскости z = 0 и одновременном изменении знаков зарядов. Поэтому желательно, чтобы и распределение потенциала обладало такой же симметрией: восстанавливалось при зеркальном отражении с одновременным изменением знака всех функций поля. Выбранный нами способ выбора нулевого потенциала удовлетворяет такой симметрии.
Задания для самостоятельной работы.
Источник
Жидкевич В.И. Электрическое поле плоскости
Жидкевич В. И. Электрическое поле плоскости // Фізіка: праблемы выкладання. — 2009. — № 6. — С. 19—23.
Задачи по электростатике можно разделить на две группы: задачи о точечных зарядах и задачи о заряженных телах, размеры которых нельзя не учитывать [1—5].
Решение задач по расчёту электрических полей и взаимодействий точечных зарядов основано на применении закона Кулона и не вызывает особых затруднений. Более сложным является определение напряжённости поля и взаимодействия заряженных тел конечных размеров: сферы, цилиндра, плоскости. При вычислении напряжённости электростатических полей различной конфигурации следует подчеркнуть важность принципа суперпозиции и использовать его при рассмотрении полей, созданных не только точечными зарядами, но и зарядами, распределёнными по поверхности и объёму. При рассмотрении действия поля на заряд формула F=qE в общем случае справедлива для точечных заряженных тел и только в однородном поле применима для тел любых размеров и формы, несущих заряд q.
Электрическое поле конденсатора получается в результате наложения двух полей, созданных каждой пластиной.
В плоском конденсаторе можно рассматривать одну пластину как тело с зарядом q1 помещённое в электрическое поле напряжённостью Е2, созданное другой пластиной.
Рассмотрим несколько задач.
1. Бесконечная плоскость заряжена с поверхностной плотностью σ >0. Найдите напряжённость поля Е и потенциал ϕ по обе стороны плоскости, считая потенциал плоскости равным нулю. Постройте графики зависимостей Е(х), ϕ (х). Ось х перпендикулярна плоскости, точка х=0 лежит на плоскости.
Решение. Электрическое поле бесконечной плоскости является однородным и симметричным относительно плоскости. Его напряжённость Связь между на пряжённостью и разностью потенциалов между двумя точками однородного электростатического поля выражается формулой
где х — расстояние между точками, измеренное вдоль силовой линии. Тогда ϕ 2= ϕ 1-Eх. При х
при х>0
Зави симости Е(х) и ϕ (х) представлены на рисунке 1.
2. Две плоскопараллельные тонкие пластины, расположенные на малом расстоянии d друг от друга, равномерно заряжены зарядом поверхностной плотностью σ1 и σ 2. Найдите напряжённости поля в точках, лежащих между пластинами и с внешней стороны. Постройте график зависимости напряжённости Е(х) и потенциала ϕ (х), считая ϕ (0)=0. Рассмотрите случаи, когда: a) σ 1=- σ 2; б) σ1 = σ 2; в) σ 1=3 σ 2—
Решение. Так как расстояние между пластинами мало, то их можно рассматривать как бесконечные плоскости.
Напряжённость поля положительно заряженной плоскости равна и направлена от неё; напряжённость поля отрицательно заряженной плоскости направлена к ней.
Согласно принципу суперпозиции поле в любой рассматриваемой точке будет создаваться каждым из зарядов в отдельности.
а) Поля двух плоскостей, заряженных равными и противоположными по знаку зарядами (плоский конденсатор), складываются в области между плоскостями и взаимно уничтожаются во внешних областях (рис. 2, а).
При х Е= 0, ϕ =0; при 0 при x>d Е= 0,
Графики зависимости напряжённости и потенциала от расстояния х приведены на рисунке 2, б, в.
Если плоскости конечных размеров, то поле между плоскостями не будет строго однородным, а поле вне плоскостей не будет точно равно нулю.
б) Поля плоскостей, заряженных равными по величине и знаку зарядами ( σ1 = σ2 ), компенсируют друг друга в пространстве между плоскостями и складываются во внешних областях (рис. 3, а). При х при 0 х>d
Воспользовавшись графиком Е(х) (рис. 3, б), построим качественно график зависимости ϕ (х) (рис. 3, в).
в) Если σ1 = σ 2, то, учитывая направления полей и выбирая направление направо за положительное, находим:
Зависимость напряжённости Е от расстояния показана на рисунке 4.
3. На одной из пластин плоского конденсатора ёмкостью С находится заряд q1 =+3q, а на другой q2 =+ q. Определите разность потенциалов между пластинами конденсатора.
Решение. 1-й способ. Пусть площадь пластины конденсатора S, а расстояние между ними d. Поле внутри конденсатора однородное, поэтому разность потенциалов (напряжение) на конденсаторе можно определить по формуле U=E*d, где Е — напряжённость поля внутри конденсатора.
где Е1, Е2 — напряжённости поля, создаваемого пластинами конденсатора.
4. В пространство между обкладками незаряженного плоского конденсатора вносят тонкую металлическую пластину, имеющую заряд +q. Определите разность потенциалов между обкладками конденсатора.
Разность потенциалов между обкладками конденсатора Если пластина находится на одинаковом расстоянии от обкладок конденсатора, то разность потенциалов между обкладками равна нулю.
6. В плоском воздушном конденсаторе напряжённость поля Е= 10 4 В/м. Расстояние между обкладками d= 2 см. Чему будет равна разность потенциалов, если между пластинами параллельно им поместить металлический лист толщиной d0 =0,5 см (рис. 7)?
Решение. Поскольку электрическое поле между пластинами однородное, то U=Ed, U=200 В.
Если между пластинами пометить металлический лист, то получается система из двух последовательно соединённых конденсаторов с расстоянием между пластинами d1 и d2. Ёмкости этих конденсаторов
Их общая ёмкость
Так как конденсатор отключён от источника тока, то заряд конденсатора при внесении металлического листа не меняется: q’=CU=С’U1; где
емкость конден сатора до внесения в него металлического листа. Получаем:
7. На пластинах А и С, расположенных параллельно на расстоянии d= 8 см друг от друга, поддерживаются потенциалы ϕ1 = 60 В и ϕ2 =- 60 В соответственно. Между ними поместили заземлённую пластину D на расстоянии d1 = 2 см от пластины А. На сколько изменилась напряжённость поля на участках AD и CD? Постройте графики зависимостей ϕ (x) и Е(х).
Решение. Первоначальная напряжённость поля между пластинами А и С:
Решение. В точках А, В, расположенных в непосредственной близости к поверхности проводника (рис. 9), поле создаётся точечным зарядом q и зарядом q’, индуцированным на стенке:
В точке А где а — расстоя ние от заряда до стенки,
. Но поле внутри проводника равно нулю; следовательно,
. Отсюда
В точке В величина нормальной составляющей напряжённости поля точечного заряда
где b — расстояние от заряда до точки, cos α =a/b, — напряжённость поля плоскости.
Следовательно,
Список использованной литературы
1. Балаш, В. А. Задачи по физике и методы их решения / В. А. Балаш. — 4-е изд. — М. : Просвещение, 1983. — 432 с.
2. Бутиков, Е. И. Физика в примерах и задачах / Е. И. Бутиков, А. А. Быков, А. С. Кондратьев. — 3-е изд. — М. : Наука, 1989. — 462 с.
3. Зилъберман, Г. Е. Электричество и магнетизм / Г. Е. Зильберман. — М. : Наука, 1990. — 384 с.
4. Меледин, Г. В. Физика в задачах / Г. В. Меледин. — 2-е изд. — М. : Наука, 1990. — 270 с.
5. Сборник задач по физике / Л. П. Баканина [и др.]; под ред. С. М. Козела. — М. : Наука, 1990. — 347 с.
Источник
Электрическое поле заряженной пластины
Вычисление электрических полей с помощью теоремы Остроградского –Гаусса | |
Продемонстрируем возможности теоремы Остроградского-Гаусса на нескольких примерах. Поле бесконечной однородно заряженной плоскости Поверхностная плотность заряда на произвольной плоскости площадью S определяется по формуле: где d q – заряд, сосредоточенный на площади d S; d S – физически бесконечно малый участок поверхности. Пусть σ во всех точках плоскости S одинакова. Заряд q – положительный. Напряженность Очевидно, что в симметричных, относительно плоскости точках, напряженность Представим себе цилиндр с образующими, перпендикулярными плоскости, и основаниями ΔS, расположенными симметрично относительно плоскости (рис. 2.12).
Тогда Суммарный поток через замкнутую поверхность (цилиндр) будет равен: Внутри поверхности заключен заряд откуда видно, что напряженность поля плоскости S равна: Полученный результат не зависит от длины цилиндра. Это значит, что на любом расстоянии от плоскости Поле двух равномерно заряженных плоскостей Пусть две бесконечные плоскости заряжены разноименными зарядами с одинаковой по величине плотностью σ (рис. 2.13). Результирующее поле, как было сказано выше, находится как суперпозиция полей, создаваемых каждой из плоскостей Тогда внутри плоскостей Вне плоскостей напряженность поля Полученный результат справедлив и для плоскостей конечных размеров, если расстояние между плоскостями гораздо меньше линейных размеров плоскостей (плоский конденсатор). Между пластинами конденсатора действует сила взаимного притяжения (на единицу площади пластин): Механические силы, действующие между заряженными телами, называют пондермоторными. Тогда сила притяжения между пластинами конденсатора: где S – площадь обкладок конденсатора. Т.к. Это формула для расчета пондермоторной силы. Поле заряженного бесконечно длинного цилиндра (нити) Пусть поле создается бесконечной цилиндрической поверхностью радиуса R, заряженной с постоянной линейной плотностью Из соображения симметрии следует, что Е в любой точке будет направлена вдоль радиуса, перпендикулярно оси цилиндра. Представим вокруг цилиндра (нити) коаксиальную замкнутую поверхность (цилиндр в цилиндре) радиуса r и длиной l (основания цилиндров перпендикулярно оси). Для оснований цилиндров Следовательно, поток вектора При Если Если уменьшать радиус цилиндра R (при Поле двух коаксиальных цилиндров с одинаковой линейной плотностью λ, но разным знаком В зазоре между цилиндрами, поле определяется так же, как и в предыдущем случае: Это справедливо и для бесконечно длинного цилиндра, и для цилиндров конечной длины, если зазор между цилиндрами намного меньше длины цилиндров (цилиндрический конденсатор). Поле заряженного пустотелого шара Пустотелый шар (или сфера) радиуса R заряжен положительным зарядом с поверхностной плотностью σ. Поле в данном случае будет центрально симметричным, Если откуда поле вне сферы: Внутри сферы, при Как видно из (2.5.7) вне сферы поле тождественно полю точечного заряда той же величины, помещенному в центр сферы. Поле объемного заряженного шара Для поля вне шара радиусом R (рис. 2.18) получается тот же результат, что и для пустотелой сферы, т.е. справедлива формула: Но внутри шара при где ρ – объемная плотность заряда, равная: Таким образом, внутри шара Источник
detector |