электрическое поле равномерно заряженного цилиндра

Электрическое поле равномерно заряженного цилиндра

Экспериментально установленные закон Кулона и принцип суперпозиции позволяют полностью описать электростатическое поле заданной системы зарядов в вакууме. Однако, свойства электростатического поля можно выразить в другой, более общей форме, не прибегая к представлению о кулоновском поле точечного заряда.

Теорема Гаусса утверждает:

Поток вектора напряженности электростатического поля 63230164552072 8через произвольную замкнутую поверхность равен алгебраической сумме зарядов, расположенных внутри этой поверхности, деленной на электрическую постоянную ε0.

63230164552082 9

Окружим теперь точечный заряд произвольной замкнутой поверхностью и рассмотрим вспомогательную сферу радиуса (рис. 1.3.3).

Таким образом, теорема Гаусса доказана.

Теорема Гаусса является следствием закона Кулона и принципа суперпозиции. Но если принять утверждение, содержащееся в этой теореме, за первоначальную аксиому, то ее следствием окажется закон Кулона. Поэтому теорему Гаусса иногда называют альтернативной формулировкой закона Кулона.

Используя теорему Гаусса, можно в ряде случаев легко вычислить напряженность электрического поля вокруг заряженного тела, если заданное распределение зарядов обладает какой-либо симметрией и общую структуру поля можно заранее угадать.

Этот результат не зависит от радиуса заряженного цилиндра, поэтому он применим и к полю длинной однородно заряженной нити.

Аналогичным образом можно применить теорему Гаусса для определения электрического поля в ряде других случаев, когда распределение зарядов обладает какой-либо симметрией, например, симметрией относительно центра, плоскости или оси. В каждом из таких случаев нужно выбирать замкнутую гауссову поверхность целесообразной формы. Например, в случае центральной симметрии гауссову поверхность удобно выбирать в виде сферы с центром в точке симметрии. При осевой симметрии замкнутую поверхность нужно выбирать в виде соосного цилиндра, замкнутого с обоих торцов (как в рассмотренном выше примере). Если распределение зарядов не обладает какой-либо симметрией и общую структуру электрического поля угадать невозможно, применение теоремы Гаусса не может упростить задачу определения напряженности поля.

Рассмотрим еще один пример симметричного распределения зарядов – определение поля равномерно заряженной плоскости (рис. 1.3.5).

Полученное выражение для электрического поля однородно заряженной плоскости применимо и в случае плоских заряженных площадок конечного размера. В этом случае расстояние от точки, в которой определяется напряженность поля, до заряженной площадки должно быть значительно меньше размеров площадки.

Источник

Электрическое поле равномерно заряженного цилиндра

tr c w

Вычисление электрических полей с помощью теоремы Остроградского –Гаусса back go

Продемонстрируем возможности теоремы Остроградского-Гаусса на нескольких примерах.

Поле бесконечной однородно заряженной плоскости

Поверхностная плотность заряда на произвольной плоскости площадью S определяется по формуле:

071

где d q – заряд, сосредоточенный на площади d S; d S – физически бесконечно малый участок поверхности.

Пусть σ во всех точках плоскости S одинакова. Заряд q – положительный. Напряженность 005во всех точках будет иметь направление, перпендикулярное плоскости S (рис. 2.11).

Очевидно, что в симметричных, относительно плоскости точках, напряженность 005будетодинакова по величине и противоположна по направлению.

Представим себе цилиндр с образующими, перпендикулярными плоскости, и основаниями ΔS, расположенными симметрично относительно плоскости (рис. 2.12).

072
Рис. 2.11 Рис. 2.12

Тогда 073

Суммарный поток через замкнутую поверхность (цилиндр) будет равен:

076

Внутри поверхности заключен заряд 077. Следовательно, из теоремы Остроградского–Гаусса получим:

откуда видно, что напряженность поля плоскости S равна:

Полученный результат не зависит от длины цилиндра. Это значит, что на любом расстоянии от плоскости 080

Поле двух равномерно заряженных плоскостей

Пусть две бесконечные плоскости заряжены разноименными зарядами с одинаковой по величине плотностью σ (рис. 2.13).

Результирующее поле, как было сказано выше, находится как суперпозиция полей, создаваемых каждой из плоскостей 081.

Тогда внутри плоскостей

Вне плоскостей напряженность поля 083

085 084

Полученный результат справедлив и для плоскостей конечных размеров, если расстояние между плоскостями гораздо меньше линейных размеров плоскостей (плоский конденсатор).

Между пластинами конденсатора действует сила взаимного притяжения (на единицу площади пластин):

Механические силы, действующие между заряженными телами, называют пондермоторными.

Тогда сила притяжения между пластинами конденсатора:

где S – площадь обкладок конденсатора. Т.к. 089, то

Это формула для расчета пондермоторной силы.

Поле заряженного бесконечно длинного цилиндра (нити)

Пусть поле создается бесконечной цилиндрической поверхностью радиуса R, заряженной с постоянной линейной плотностью 091, где d q – заряд, сосредоточенный на отрезке цилиндра (рис. 2.14).

092

Из соображения симметрии следует, что Е в любой точке будет направлена вдоль радиуса, перпендикулярно оси цилиндра.

Представим вокруг цилиндра (нити) коаксиальную замкнутую поверхность (цилиндр в цилиндре) радиуса r и длиной l (основания цилиндров перпендикулярно оси). Для оснований цилиндров 093для боковой поверхности 094т.е. зависит от расстояния r.

Следовательно, поток вектора 005через рассматриваемую поверхность, равен 095

При 096на поверхности будет заряд 097По теореме Остроградского-Гаусса 098, отсюда

Если 100 101, т.к. внутри замкнутой поверхности зарядов нет (рис.2.15).

102

Если уменьшать радиус цилиндра R (при 103), то можно вблизи поверхности получить поле с очень большой напряженностью и, при 104, получить нить.

Поле двух коаксиальных цилиндров с одинаковой линейной плотностью λ, но разным знаком

106

В зазоре между цилиндрами, поле определяется так же, как и в предыдущем случае:

107

Это справедливо и для бесконечно длинного цилиндра, и для цилиндров конечной длины, если зазор между цилиндрами намного меньше длины цилиндров (цилиндрический конденсатор).

Поле заряженного пустотелого шара

Пустотелый шар (или сфера) радиуса R заряжен положительным зарядом с поверхностной плотностью σ. Поле в данном случае будет центрально симметричным, 005– в любой точке проходит через центр шара. 108,и силовые линии перпендикулярны поверхности в любой точке. Вообразим вокруг шара – сферу радиуса r (рис. 2.17).

Если 096то внутрь воображаемой сферы попадет весь заряд q, распределенный по сфере, тогда

откуда поле вне сферы:

Внутри сферы, при 100поле будет равно нулю, т.к. там нет зарядов: 111

113 112

Как видно из (2.5.7) вне сферы поле тождественно полю точечного заряда той же величины, помещенному в центр сферы.

Поле объемного заряженного шара

Для поля вне шара радиусом R (рис. 2.18) получается тот же результат, что и для пустотелой сферы, т.е. справедлива формула:

Но внутри шара при 100сферическая поверхность будет содержать в себе заряд, равный

115

где ρ – объемная плотность заряда, равная: 116; 117– объем шара. Тогда по теореме Остроградского-Гаусса запишем:

Таким образом, внутри шара 120

Источник

Учебник по физике. Конспект лекций и примеры решения задач

Электростатическое поле бесконечно длинного прямого равномерно заряженного цилиндра.

Рассмотрим цилиндр радиусом R, равномерно заряженный с линейной плотностью + t (это, конечно же, может быть электрический кабель). Из условия симметрии следует, что силовые линии лежат в плоскостях, перпендикулярных к образующей цилиндра, и направлены радиально от оси цилиндра (рис.16.14), причем, во всех точках, равноудаленных от оси цилиндра, как электрические смещения D, так и напряженности поля Е одинаковы.

Для того чтобы найти D и Е в какой-либо точке А, лежащей на расстоянии r>R от оси цилиндра, проведем через эту точку замкнутую цилиндрическую поверхность S, имеющую конечную длину и коаксиальную с заряженной. Поток смещения сквозь основания этой поверхности, перпендикулярные к оси цилиндра, очевидно, равен нулю, так как для оснований Dn=0.

Рис.16.14. Поле бесконечного заряженного цилиндра.

В точках боковой поверхности Dn = D = const и поток смещения равен 2 p rlD. Таким образом, полный поток смещения ФD сквозь рассматриваемую замкнутую поверхность S равен

Приравнивая правые части выражений (16.25) и (16.24), получаем:

Разность потенциалов между двумя точками поля, лежащими на расстояниях r1 и r2 от оси заряженного цилиндра, равна:

4. Электростатическое поле заряженной проводящей

Рассмотрим поле проводящей и, разумеется, равномерно заряженной по поверхности сферы с радиусом R. Из условия симметрии следует, что силовые линии электростатического поля заряженной сферы направлены радиально (рис.16.16). По тем же причинам численное значение электрического смещения D должно быть одинаковым во всех точках, лежащих на одном и том же расстоянии от центра О заряженной сферы.

Проведем через исследуемую точку поля А, лежащую вне заряженной сферы (r>R), шаровую поверхность S с центром в точке О. Во всех точках этой поверхности Dn = D = const. Поэтому поток смещения сквозь замкнутую поверхность S равен:

Рис.16.16. К расчету поля заряженной проводящей сферы.

Эти формулы тождественны формулам для поля точечного заряда q. Таким образом, электростатическое поле за пределами заряженной сферической поверхности эквивалентно полю точечного заряда, равного общему заряду сферы и расположенного в ее центре. Причем расстояние отсчитывается от центра сферы, а напряженность поля на поверхности (точнее, в точках, бесконечно близких к поверхности, но вне её) равна

Рассмотрим теперь произвольную точку В, лежащую внутри сферы (r R и r2>R ), находим из формулы:

Электростатическое поле равномерно заряженного по объёму шара.

Рассмотрим шар радиусом R, заряженный с постоянной объемной плотностью r (рис.16.17). Такой процедуре можно подвергнуть лишь шар из диэлектрика.

Рис.16.17. К расчету поля непроводящей заряженной сферы.

В любой точке А, лежащей вне шара на расстоянии r от его центра (r>R),его поле аналогично полю точечного заряда рacположенного в центре шара. Поэтому электрическое смещение, напряженность поля и разность потенциалов вычисляются соответственно по формулам, полученным для проводящей заряженной сферы (16.29), (16.30) и (16.31).

В любой точке В, лежащей внутри шара на расстоянии r от его центра (r

Разность потенциалов между двумя точками поля внутри шара зависит от расстояния не линейно и равна:

На рис.16.17 представлен график зависимости Е от r для равномерно заряженного по объёму шара. При r = R выражения (16.30) и (16.35) совпадают:

Источник

Применение теоремы Гаусса к расчету электрических полей

Использование теоремы Гаусса для расчета полей эффективно в тех случаях, когда поле обладает специальной симметрией (чаще всего плоской, цилиндрической или сферической). Симметрия и конфигурация поля должны быть такими, чтобы, во-первых, заряженное тело можно было бы окружить достаточно простой замкнутой поверхностью и, во-вторых, вычисление потока вектора напряженности свести к простому умножению Е (или En) на площадь поверхности S или часть ее. Если этого сделать нельзя, то задачу необходимо решать другими методами.

1) Поле равномерно заряженной бесконечной плоскости

Будем считать заряд положительным. Плоскость заряжена с постоянной поверхностной плотностью image110. Из симметрии вытекает, что напряженность в любой точке поля имеет направление, перпендикулярное к плоскости (рис. 2.10). Очевидно, что в симметричных относительно плоскости точках напряженность поля одинакова по величине и противоположна по направлению.

Выделим на заряженной плоскости площадку image112. Окружим эту площадку замкнутой поверхностью. В качестве замкнутой поверхности представим цилиндрическую поверхность с образующими, перпендикулярными к плоскости и основаниями величины image112, расположенными относительно плоскости симметрично. Применим к этой поверхности теорему Гаусса image114. Поток через боковую часть поверхности будет отсутствовать, так как image116в каждой ее точке равна нулю. Для оснований image116совпадает с image119. Следовательно, суммарный поток через поверхность будет равен image121. Внутри поверхности заключен заряд image123. Согласно теореме Гаусса, должно выполняться условие: image125, откуда

image127image129. (3)

Полученный результат не зависит от длины цилиндра, т.е. на любых расстояниях от плоскости напряженность поля одинакова по величине. Картина линий напряженности выглядит, как показано на рис. 2.11. Для отрицательно заряженной плоскости направления векторов изменятся на обратные. Если плоскость конечных размеров, то полученный результат будет справедлив лишь для точек, расстояние которых от края пластины значительно превышает расстояние от самой пластинки (рис. 2.12).

Рис. 2.11
Рис. 2.12

image131

image133

2) Поле, образованное двумя разноименными заряженными плоскостями (бесконечно большими)

Поле двух параллельных бесконечно больших плоскостей, заряженных разноименно с одинаковой по величине постоянной поверхностной плотностью image135можно рассматривать как суперпозицию полей, создаваемых каждой из плоскостей в отдельности. В области между плоскостями (рис.2.13) складываемые поля имеют одинаковое направление, так что результирующая напряженность равна

image137 image139(4)

image141Вне объема, ограниченного плоскостями, складываемые поля имеют противоположные направления, так что результирующая напряженность равна нулю E=0. Таким образом, поле сосредоточено между плоскостями. Напряженность поля во всех точках этой области одинакова по величине и по направлению. Поле, обладающее такими свойствами, называется однородным. Линии напряженности однородного поля представляют собой совокупность параллельных равноотстоящих прямых.

Полученный результат приблизительно справедлив и в случае плоскостей конечных размеров, если расстояние между плоскостями значительно меньше их линейных размеров (плоский конденсатор). В этом случае заметные отклонения поля от однородности напряженности наблюдаются только вблизи краев пластин (рис. 2.14).

image143

Результирующее поле, как было сказано выше, находится как суперпозиция полей, создаваемых каждой из плоскостей. Тогда внутри плоскостей

image145

Вне плоскостей напряженность поля image147.

Между пластинами конденсатора действует сила взаимного притяжения (на единицу площади пластин):

image149, т.е. image151.

Механические силы, действующие между заряженными телами, называют пондермоторными.

Тогда сила притяжения между пластинами конденсатора:

image153

где S – площадь обкладок конденсатора. Т.к. image155, то

image157.

Это формула для расчета пондермоторной силы.

3) Поле, образованное бесконечно длинным заряженным цилиндром

image159Рассчитаем напряженность поля, создаваемого бесконечно длинным цилиндром радиуса R, заряженным с поверхностной плотностью image161в точке А, отстоящей на расстояния r от оси цилиндра. Из соображений симметрии следует, что напряженность в любой точке направлена вдоль радиальной прямой, перпендикулярной к оси цилиндра, а значение напряженности зависит лишь от расстояния r от цилиндра.

Вырежем из бесконечно длинного цилиндра элемент длиной h. Окружим этот элемент цилиндрической поверхностью (коаксиальной с заряженной) радиуса r, так, чтобы эта поверхность проходила через точку А (рис. 2.15). Для оснований внешнего цилиндра image163, для боковой поверхности (заряд считаем положительным) image165. Силовые линии поля пересекают только боковую поверхность цилиндра радиуса r. Следовательно, поток вектора image004через эту замкнутую поверхность будет равен image168. Если image170внутрь поверхности попадает заряд image172, где image161–поверхностная плотность заряда. Применяя теорему Гаусса, получаем:

image114, image176, откуда image178. (5)

Если image180, рассматриваемая замкнутая поверхность не содержит внутри зарядов, вследствие чего image182. Таким образом, внутри заряженной цилиндрической поверхности поле отсутствует.

Если радиус цилиндра image184, а заряд распределяется по длине цилиндра с линейной плотностью τ. Тогда можно формулу (17) преобразовать:

image186image188

image190Тогда image192(6)

4) Поле, образованное двумя цилиндрическими поверхностями, заряженными одинаковыми разноименными зарядами

С помощью принципа суперпозиции легко найти поле двух коаксиальных цилиндрических поверхностей, заряженных с одинаковой по величине, но отличающейся знаком линейной плотностью image194(рис. 2.16). Внутри меньшего и вне большого цилиндров поле отсутствует. В зазоре между цилиндрами величина напряженности поля определяется формулой

image192(7).

Это справедливо и для цилиндрических поверхностей конечной длины, если зазор между поверхностями значительно меньше их длины (цилиндрический конденсатор).

edugr4

5) Поле, образованное заряженной сферической поверхностью

image197Рассмотрим поле, создаваемое сферической поверхностью радиуса R, заряженной с постоянной поверхностной плотностью image161. Это поле обладает центральной симметрией. Это означает, что направление вектора image004в любой точке проходит через центр сферы, а значение напряженности является функцией расстояния r от центра сферы (рис. 2.17). Найдем напряженность поля, созданную заряженной сферой в точках А и В. Через точки А и В проведем сферические поверхности и найдем поток вектора напряженности через эти поверхности.

Точка В находится внутри заряженной сферической поверхности, на расстоянии r от центра (r R, равна

image207(8)

Поле вне заряженной сферической поверхности имеет такой же вид, как поле точечного заряда q, находящегося на расстоянии r от точки А. Если известна поверхностная плотность заряда σ, то image209, подставив в (8), получим

image211. (9)

6). Поле объемного заряженного шара

Найдем напряженность поля, созданного заряженным шаром в точке А, находящейся на расстоянии r от центра шара. Окружим заряженное тело замкнутой сферической поверхностью, радиуса r, проходящей через точку А (рис. 2.18).

Для всех точек этой поверхности image201. Внутрь поверхности попадает весь заряд q, создающий рассматриваемое поле. Следовательно, image203(так как image205). Таким образом, для поля вне шара радиусом R (рисунок 2.18) получается тот же результат, что и для сферы, т.е. справедлива формула:

image214.

image216

Точка В находится внутри заряженной сферической поверхности, на расстоянии r от центра (r

| следующая лекция ==>
Поток вектора напряженности | Дифференциальная форма теоремы Остроградского-Гаусса

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Adblock
detector