электрическое поле это простыми словами

Электрическое поле и его характеристики

теория по физике ? электростатика

Вокруг заряженных тел существует особая среда — электрическое поле. Именно это поле является посредником в передаче электрического взаимодействия.

Свойства электрического поля

Характеристики электрического поля

Напряженность численно равна электрической силе, действующей на единичный положительный заряд:

q 0 — пробный заряд.

Пример №1. Сила, действующая в поле на заряд в 20 мкКл, равна 4Н. Вычислить напряженность поля в этой точке.

20 мкКл = 20∙10 –6 Кл

Силовые линии — линии, касательные к которым совпадают с вектором напряженности.

Потенциальная энергия взаимодействия двух зарядов W (Дж) в вакууме:

Потенциальная энергия взаимодействия двух зарядов W (Дж) в среде:

Знак потенциальной энергии зависит от знаков заряженных тел:

Потенциал — энергетическая характеристика электрического поля. Обозначается как ϕ. Единица измерения — Вольт (В).

Численно потенциал равен отношению потенциальной энергии взаимодействия двух зарядов к единичному положительному заряду:

q 0 — пробный заряд.

Потенциал — скалярная физическая величина. Знак потенциала зависит от знака заряда, создающего поле. Отрицательный заряд создает отрицательный потенциал, и наоборот.

Значение потенциала зависит от выбора нулевого уровня для отсчета потенциальной энергии, а разность потенциалов — от выбора нулевого уровня не зависит.

Напряжение — разность потенциалов. Обозначается как U. Единица измерения — Вольт (В). Численно напряжение равно отношению работы электрических сил по перемещению заряда из точки 1 в точку 2:

Эквипотенциальные поверхности — поверхности, имеющие одинаковый потенциал. Они равноудалены от заряженных тел и обычно повторяют их форму. Эквипотенциальные поверхности перпендикулярны силовым линиям.

Пылинка, имеющая массу 10 −6 кг, влетела в однородное электрическое поле в направлении против его силовых линий с начальной скоростью 0,3 м/с и переместилась на расстояние 4 см. Каков заряд пылинки, если её скорость уменьшилась при этом на 0,2 м/с, а напряжённость поля 105 В/м?

Источник

Что такое электрическое поле: объяснение простыми словам

Сам термин электрическое поле появилось в научном лексиконе очень давно, около 200 лет назад. Оно образуется только вокруг электрического заряда, чем больше сам заряд, тем сильнее поле. Поле имеет две физические характеристики – напряженность в данной точке и потенциал. Другими словами, электрическое поле можно назвать особым типом материи, существующая вблизи электронов и протонов (заряженных частиц). Именно через поле происходит взаимодействие одной частицы на другую.

Далее рассмотрим, что такое электрическое поле, как оно образуется и какие физические величины оно имеет. В статье подробно рассказано об устройстве и его сферах применения, добавлена пара полезных видеороликов по теме, а также вниманию читателю предложен интересный материал для скачивания.

image4654

История открытия электрического поля

Мыслителям прошлого трудно было принять концепцию «действия на расстоянии». И правда, как может один заряд действовать на другой, если они не соприкасаются? Даже Ньютону, применившему эту идею в теории всемирного тяготения, нелегко было свыкнуться с нею.

Как мы видели, однако, эти трудности можно преодолеть с помощью понятия поля, которое ввел английский ученый Майкл Фарадей (1791-1867). Согласно Фарадею, от каждого заряда исходит электрическое поле, пронизывающее все пространство. Когда к одному заряду подносят другой, он испытывает действие силы, которая обусловлена электрическим полем первого заряда.

jekspert na jelektro

Поле, создаваемое одним или несколькими зарядами, можно исследовать с помощью небольшого положительного пробного заряда, измеряя действующую на него силу. Под пробным зарядом мы понимаем достаточно малый заряд, собственное поле которого не меняет существенно распределения остальных зарядов, создающих исследуемое поле.

Сила в точке b меньше, чем в a, из-за большего расстояния между зарядами (закон Кулона); в точке с сила еще меньше. Во всех случаях сила направлена радиально от заряда Q.
По определению напряженность электрического поля, (или просто электрическое поле) E в любой точке пространства равна отношению силы F, действующей на малый положительный пробный заряд q, к величине этого заряда:

Из вышеописанного определения следует, что направление напряженности электрического поля в любой точке пространства совпадает с направлением силы, действующей в этой точке на положительный пробный заряд. Напряженность электрического поля представляет собой силу, действующую на единицу заряда; она измеряется в ньютонах на кулон (Н/Кл).

Более строго Е определяется как предел отношения F/q при q, стремящемся к нулю. Напряженность электрического поля Е определяется через отношение F/q, чтобы исключить зависимость поля Е от величины пробного заряда q. Иначе говоря, Е учитывает только те заряды, которые создают рассматриваемое в данной точке электрическое поле. Поскольку Е – векторная величина, электрическое поле является векторным полем.

Что собой представляет этот вид поля

Чтобы это понять, давайте с Вами прежде разберёмся в его свойствах и проявлениях. Как Вы должны знать, электрическое поле проявляет себя тогда, когда возникает перераспределение электрических зарядов между телами. Точнее, когда в силу некоторых обстоятельств одного вида заряда становится больше или меньше, по отношению к противоположному. Тогда одни тела начинают притягиваться либо отталкивать другие на расстоянии.

Поскольку в промежутке этого расстояния нет плотных тел, то, следовательно, можно утверждать о существовании невидимого поля. Ну, а поскольку данное поле связанно с электрическими явлениями, то и поле стали называть электрическим. В целом же, электрическое поле (как и другие виды полей) существуют везде и вокруг всего, только из-за их скомпенсированости взаимодействия друг на друга и невидимости невооруженным глазом создаётся впечатление, будто они появляются.

sravnenie jelektricheskogo i magnitnogo polej

К свойствам электрического поля можно отнести:

Как было упомянуто выше, электрическое поле определяется при помощи пробного точечного заряда. Если электрический заряд (пробный заряд) обладает электрическим полем внести в интересующую нас точку пространства, можно выяснить — если в данном месте электрическое поле. Если начнёт действовать электрическая сила, то значит, в этой точки поле есть. Интенсивность данного электрического поля будет характеризовать напряженность поля.

info

Поэтому и было целесообразно ввести силовую характеристику любой точки данного поля, созданного зарядом. К сожалению, сила «F» (Кулона) подобной характеристикой послужить не может, поскольку для одной точки поля эта сила будет прямо пропорциональна величине точечного заряда.

Было принято считать силовой характеристикой точки электрического поля «E». Она стала называться напряжённостью электрического поля. Напряжённость измеряется силой, с которой электрическое поле действует на единичный положительный заряд, что был внесён в некую точку определяемого поля в пространстве.

Напряженность является векторной величиной. Напряжённость электрического поля измеряется в Ньютонах на Кулон или в Вольтах на метр. Электрические поля, это неотъемлеммая составляющая всего существующего в мироздании, и лишь в силу нашей ограниченности восприятия мира, поля воспринимаются нами, как нечто загадочное и непонятное.

20150323 3

Примеры электрических полей

Основными электрическими свойствами материалов физических объектов, проявляющимися при взаимодействии объектов с электрическим полем, являются электрическая проводимость и поляризуемость. Оба свойства определяются наличием или отсутствием в материале свободных носителей электрических зарядов – электронов или ионов, что, в свою очередь, обусловлено следующим строением атомов вещества, объединенных в молекулы и кристаллы.

Электроны атомов, вращающиеся вокруг ядра по определенным (разрешенным) орбитам, обладают некоторой энергией или, иначе говоря, занимают определенные энергетические уровни. Совокупностью этих уровней образуются энергетические зоны разрешенных уровней, а между ними находятся зоны запрещенных уровней.

Нижние разрешенные зоны до конца заполнены электронами, располагающимися ближе к ядру и подверженными меньшему воздействию со стороны атомов. Для объяснения электрических свойств твердых тел эти зоны существенного значения не имеют. С этой точки зрения представляет интерес валентная зона, заполненная валентными электронами, испытывающими наибольшее воздействие других атомов, большое расщепление уровней. Эти электроны относительно легко переходят от одного атома к другому, обусловливая образование разноименно заряженных ионов и создание химических соединений отдельных атомов в молекулы и кристаллы.

unnamed 1 4

Закон Кулона

Сила взаимодействия двух зарядов зависит от величины и взаимного расположения зарядов, а также от физических свойств окружающей их среды. Для двух наэлектризованных физических тел, размеры которых пренебрежимо малы по сравнению с расстоянием между телами, хила взаимодействия математически определяется следующим образом:

unnamed 2 1

Потенциал электрического поля

Электрическое поле всегда сообщает движение заряду, если силы поля, действующие на заряд, не уравновешиваются какими-либо сторонними силами. Это говорит о том, что электрическое поле обладает потенциальной энергией, т. е. способностью совершать работу. Перемещая заряд из одной точки пространства в другую, электрическое поле совершает работу, в результате чего запас потенциальной энергии поля уменьшается. Если заряд перемещается в электрическом поле под действием какой-либо сторонней силы, действующей навстречу силам поля, то работа совершается не силами электрического поля, а сторонними силами.

В этом случае потенциальная энергия поля не только не уменьшается, а, наоборот, увеличивается. Работа, которую совершает сторонняя сила, перемещая в электрическом поле заряд, пропорциональна величине сил поля, противодействующих этому перемещению. Совершаемая при этом сторонними силами работа полностью расходуется на увеличение потенциальной энергии поля. Для характеристики поля со стороны его потенциальной энергии принята величина, называемая потенциалом электрического поля.

img3

Сущность этой величины состоит в следующем. Предположим, что положительный заряд находится за пределами рассматриваемого электрического поля. Это значит, что поле практически не действует на данный заряд. Пусть сторонняя сила вносит этот заряд в электрическое поле и, преодолевая сопротивление движению, оказываемое силами поля, переместит заряд в данную точку поля. Работа, совершаемая силой, а значит, и величина, на которую увеличилась потенциальная энергия поля, зависит всецело от свойств поля. Следовательно, эта работа может характеризовать энергию данного электрического поля.

alert

Из сказанного следует, что потенциал электрического поля в данной его точке численно равен работе, совершаемой сторонней силой при перемещении единицы положительного заряда из-за пределов поля в данную точку. Потенциал поля измеряется в вольтах (В). Если при переносе одного кулона электричества из-за пределов поля в данную точку сторонние силы совершили работу, равную одному джоулю, то потенциал в данной точке поля равен одному вольту: 1 вольт = 1 джоуль / 1 кулон.

Основные параметры

Потенциал – φ – это отношение потенциальной энергии заряда в поле к этому заряду. Основная единица потенциала ровна 1в. Разность потенциалов между двумя точками называется напряжение.

Разность потенциалов бывает между одноимёнными зарядами и разноимёнными.

На управляющей сетке U относительно катода имеет отрицательный знак, так как напряжение на сетке меньше, а 25в чем на катоде.

slide 4

Напряжённость – это отношение силы, с которой электрическое поле действует на заряд к величине этого заряда.

Закон Кулона – сила взаимодействия между двумя зарядами прямо пропорционально произведению этих зарядов и обратно пропорционально квадрату расстояния между ними и зависит от среды, в которой происходит взаимодействие.

Практика применения

Удивительное явление получило правильное объяснение только тогда, когда физики поняли, что вокруг каждого наэлектризованного тела существует что-то такое, что воздействует на другие заряды. Это «что-то» ученые стали называть электрическим полем. Электрическое поле неразрывно связано с зарядом, однако это не сам заряд. Поле составляет как бы своеобразное продолжение заряда в окружающем его пространстве. Поле отлично от заряда, но оно не менее реально, не менее материально, чем сам заряд. Обнаружить существование электрического поля возле заряда можно весьма простым опытом.

Для этого надо наклеить на стеклянную пластинку кружочек из станиоля или фольги, наэлектризовать его и посыпать мелкими игольчатыми кристалликами гипса или хинина. Кристаллики разложатся по линиям расходящимися лучами во все стороны от заряженного кружка. Если вырезать из фольги два кружка и им сообщить электрические заряды — одному положительный, а другому отрицательный, затем на стекло насыпать мелкие игольчатые кристаллики гипса, то под воздействием электрического поля иголочки гипса улягутся в определенном порядке; их расположение отчасти напоминает размещение железных опилок возле полюсов магнита.

info

Академик А. Ф. Иоффе рассказывал, какой случай ему однажды пришлось наблюдать. Вместе с известным физиком К. Рентгеном Иоффе работал на вершине горы. И вдруг длинные волосы Рентгена распушились, а его большая борода взъерошилась так, что Рентген стал похожим на Черномора.

Внезапное превращение Рентгена в Черномора было вызвано большой тучей, проходившей в это время над вершиной горы. Туча несла с собой большой электрический заряд; между тучей и горой образовалось электрическое поле. Под влиянием этого поля волосы Рентгена расположились так же, как и кристаллики гипса между станиолевыми наэлектризованными кружочками, то есть вдоль так называемых силовых линий электрического поля.

Принцип суперпозиции

Если с помощью пробного заряда исследуется электрическое поле, создаваемое несколькими заряженными телами, то результирующая сила оказывается равной геометрической сумме сил, действующих на пробный заряд со стороны каждого заряженного тела в отдельности. Следовательно, напряженность электрического поля, создаваемого системой зарядов в данной точке пространства, равна векторной сумме напряжённостей электрических полей, создаваемых в той же точке зарядами в отдельности:

slide 13

Потенциальная энергия взаимодействия зарядов

Электрические заряды взаимодействуют друг с другом и с электрическим полем. Любое взаимодействие описывает потенциальной энергией. Обратите внимание на отсутствие модулей у зарядов. Для разноименных зарядов энергия взаимодействия имеет отрицательное значение.

Такая же формула справедлива и для энергии взаимодействия равномерно заряженных сфер и шаров. Как обычно, в этом случае расстояние r измеряется между центрами шаров или сфер. Если же зарядов не два, а больше, то энергию их взаимодействия следует считать так: разбить систему зарядов на все возможные пары, рассчитать энергию взаимодействия каждой пары и просуммировать все энергии для всех пар.

Задачи по данной теме решаются, как и задачи на закон сохранения механической энергии: сначала находится начальная энергия взаимодействия, потом конечная. Если в задаче просят найти работу по перемещению зарядов, то она будет равна разнице между начальной и конечной суммарной энергией взаимодействия зарядов. Энергия взаимодействия так же может переходить в кинетическую энергию или в другие виды энергии. Если тела находятся на очень большом расстоянии, то энергия их взаимодействия полагается равной 0.

Если в задаче требуется найти минимальное или максимальное расстояние между телами (частицами) при движении, то это условие выполнится в тот момент времени, когда частицы движутся в одну сторону с одинаковой скоростью. Поэтому решение надо начинать с записи закона сохранения импульса, из которого и находится эта одинаковая скорость. А далее следует писать закон сохранения энергии с учетом кинетической энергии частиц во втором случае.

peremennoe magnitnoe pole2

Потенциал. Разность потенциалов. Напряжение

Электростатическое поле обладает важным свойством: работа сил электростатического поля при перемещении заряда из одной точки поля в другую не зависит от формы траектории, а определяется только положением начальной и конечной точек и величиной заряда. Следствием независимости работы от формы траектории является следующее утверждение: работа сил электростатического поля при перемещении заряда по любой замкнутой траектории равна нулю.

Свойство потенциальности (независимости работы от формы траектории) электростатического поля позволяет ввести понятие потенциальной энергии заряда в электрическом поле. Потенциал φ является энергетической характеристикой электростатического поля. В Международной системе единиц (СИ) единицей потенциала (а значит и разности потенциалов, т.е. напряжения) является вольт [В]. Потенциал – скалярная величина.

Во многих задачах электростатики при вычислении потенциалов за опорную точку, где значения потенциальной энергии и потенциала обращаются в ноль, удобно принять бесконечно удаленную точку. В этом случае понятие потенциала может быть определено следующим образом: потенциал поля в данной точке пространства равен работе, которую совершают электрические силы при удалении единичного положительного заряда из данной точки в бесконечность.

alert

Для наглядного представления электрического поля наряду с силовыми линиями используют эквипотенциальные поверхности. Поверхность, во всех точках которой потенциал электрического поля имеет одинаковые значения, называется эквипотенциальной поверхностью или поверхностью равного потенциала. Силовые линии электрического поля всегда перпендикулярны эквипотенциальным поверхностям. Эквипотенциальные поверхности кулоновского поля точечного заряда – концентрические сферы.

Во всех предыдущих формулах речь шла именно о работе электростатического поля, но если в задаче говорится, что «работу надо совершить», или идет речь о «работе внешних сил», то эту работу следует считать так же, как и работу поля, но с противоположным знаком.

Источник

Электрическое поле

Электрическое поле – феномен, который изучает классическая электродинамика. Наряду с магнитным и электромагнитным полем термин «электрическое поле» является одним из фундаментальных в современной физической науке. С использованием этого термина и понятия электрического заряда можно описать намного большее количество природных явлений, чем может показаться неосведомлённому в физике человеку.

Общая характеристика

Электрическим полем называется специфическая разновидность материи, формируемая микротелами, имеющими заряды. Тем не менее, это не только совокупность заряженных тел: данным термином именуется также микрополе, которое формирует в пространстве каждое заряженное тело. Именно совокупность этих микрополей и создаёт электрические поля в привычном для нас понимании.

Существование и непрерывное функционирование электрического поля обусловлено непрерывным взаимодействием частиц, имеющих заряды, в ходе которого они непосредственно сообщают электромагнитную энергию один другому посредством электрических полей, которые окружают каждое из них. Графически электрическое поле следует изображать в виде схематичной совокупности линий, в физической науке именуемых силовыми.

epole1Силовые линии

Благодаря достижениям современной физики мы знаем, что электрические силы объясняют все химические и физические свойства веществ, от атома до животной клетки. Естествоиспытателями, которые заложили фундамент научного знания об электрическом поле, были Андре-Мари Ампер, Майкл Фарадей и Джеймс Клерк Максвелл.

Электрический заряд

Понятие электрического заряда занимает центральное место в классической теории электромагнетизма. Электрическим зарядом в физике называется величина, которая характеризует способность объектов входить в электрические взаимодействия. Следует подчеркнуть, что тела с одноимёнными зарядами всегда отталкиваются, а тела с разноимёнными – притягиваются друг к другу.

elpole8Электрический заряд

Фундаментальная характеристика заряда заключается в его двойственной природе: заряды бывают и положительными, и отрицательными. Так, все заряженные тела условно делятся физиками на два подтипа, при этом все тела одного из подтипа отталкивают друг друга, но притягивают тела из второго подтипа. Например, если частица А отталкивает частицу В, но частица А притягивает частицу С, то частица В тоже будет притягивать частицу С.

Физики до сих пор не выяснили, почему тела обладают этим глобальным, универсальным и, при ближайшем рассмотрении, элементарным свойством. Тем не менее, термины «отрицательный заряд» и «положительный заряд» являются противоположными проявлениями одного и того же качества.

Заряженная частица всегда рождается в паре с частицей противоположного заряда. Например, пара положительно и отрицательно заряженных электронов (позитрон и негатрон) появляется на свет посредством распадения фотона. При этом процессе изменения заряда не происходит, другими словами, изменение заряда равно нулю до и после «превращения» фотона.

Чтобы понять, в чём заключается сущность данной скалярной величины и из чего состоит электрическое вещество, следует изучить два фундаментальных свойства электрического заряда: квантование и сохранение заряда.

Принцип квантования заряда

Даже начинающий физик знает: в природе электрические заряды состоят из дискретных зарядов, имеющих постоянную величину, которая характеризуется как заряд электрона и обозначается символом е. Например, положительный заряд позитрона и отрицательный заряд негатрона равны по своей величине. Квантование заряда – это и есть природное уравнивание величин зарядов двух разноимённо заряженных частиц. Важное понятие в терминологии квантования – дискретность заряда. Согласно новейшим физическим теориям, заряд квантуется, то есть обладает свойством дискретности: один заряд состоит из минимальных порций зарядов, которые далее разделить невозможно.

Принцип сохранения заряда

Этот принцип следует из природы «рождения» двух миркотел, имеющих разноимённые заряды. Это фундаментальный эмпирический закон, не имеющий противоречий ни в одном из сделанных до сегодняшнего дня исследований. Дословно принцип сохранения гласит: в закрытой системе электрический заряд, носящий и другое название – алгебраическая сумма двух разноимённых зарядов, –остаётся постоянным.

Кулоновская сила

Концепция Кулона характеризует взаимодействие между двумя зарядами, пребывающими в состоянии покоя. Она гласит: два недвижимых заряда отталкивают либо притягивают один другого с силой, которая прямо пропорциональна произведению величин зарядов, но обратна длине расстояния между этими зарядами во второй степени. Вместе с этим, сила взаимодействия пары зарядов не может измениться при присутствии третьего.

С помощью кулоновского принципа естествоиспытатель может отыскать состояние равновесия в ситуации свободного перемещения зарядов под воздействием силы другого типа, при котором заряды будут распределяться с постоянным коэффициентом. Сила Кулона предопределена третьим законом Ньютона, который утверждает, что заряды воздействуют один на другого с силами, которые равны по модулям, но противоположны по направлениям.

Суперпозиция полей

Закон Кулона и все вытекающие из него утверждения являются лишь основой для другого, более масштабного принципа – закона суперпозиции. Исходя из этого фундаментального утверждения, силы, которые действуют на заряды, каждый из которых располагается в конкретной точке объединённой системы, являют собой сумму сил, имеющих строгое направление и формируемых отдельными группами зарядов по отдельности и влияющих на заряды в конкретных точках.

В отличие от закона Кулона, принцип суперпозиции может быть недостаточным в рамках некоторых квантовых явлений в электрическом поле.

Теория близкодействия

Согласно теории близкодействия, электрические заряды передают свои взаимодействия с помощью особых вещественных частиц-посредников и производятся с конечной скоростью.

Основателями теории близкодействия в классической физике являются философ и физик Рене Декарт и естествоиспытатель Майкл Фарадей. В рамках данной концепции принято считать, что частицы, которые являются посредниками в процессе передачи взаимодействий, движутся со строго определённой скоростью, которая стремится к скорости света.

Переносчиками, или телами-посредниками, которые передают взаимодействие зарядов, являются кванты электрического поля, движущиеся со скоростью света.

elpole6Теория близкодействия

Электроемкость, конденсатор и напряженность электрического поля

Величина С, равная заряду q, который требуется сообщить проводнику с целью повышения его потенциала, называется электроёмкостью.

Электроёмкость описывает инертность заряжаемого вещества, которое может проводить электрический ток, или, другими словами, его сопротивляемость повышению потенциала.
Формула, которая характеризует принцип электроёмкости системы:
opole2

Размер и форма проводника формируют величину электроёмкости, как и свойства диэлектрика, который разделяет проводники. В физике имеет значение один тип систем, сосредоточивающий электрическое поле в определённой месте пространства. Он носит название «конденсатор», который, в свою очередь, состоит из проводников, именуемых обкладками.

Данный тип систем являет собой конфигурацию проводников, которую составляют две плоские проводящие пластины, расположенные параллельно друг другу на маленьком расстоянии и отграниченные слоем диэлектрика.

Напряжённость электрического поля

Напряжённость электрического поля – второй по значимости термин в теории об электричестве после электрического заряда. Если естествоиспытатель знает всё хотя бы об этих двух понятиях, он сможет проводить простейшие опыты с электричеством и подкреплять их знаниями из элементарного курса физики.

Напряжённость – это сила, воздействующая на отдельный статичный заряд. Исходя из общепринятых норм можно сказать, что напряжённость электрического поля обозначается символом Е. Стоит отметить, что напряжённость является векторной величиной, а электрический заряд – скалярной.

elpole9Напряжённость электрического поля

Потенциальная энергия электрического заряда и потенциальность полей

Заряды наполняют электрическое поле. Они двигаются по некоторым замкнутым траекториям. Величины работы их сил равняются нулю, и потому эти силы (или силовые поля) именуют потенциальными. Считается, что некоторые виды электрических полей, в частности, электростатическое поле, обладает свойством потенциальности изначально. Это доказанная теория, и она не требует новых исследований.

Потенциальная энергия

Благодаря свойству потенциальности физики могут судить о том, что потенциальная энергия присуща каждому электрическому заряду в конкретном поле. Наглядно проиллюстрировать этот принцип можно так: в пространстве имеется конкретная точка, в которую может быть перемещён конкретный заряд, величина потенциальной энергии которого будет равна нулю.

Силовые линии

Из закона потенциальности полей вытекает концепция его силовых линий. В действительности подобных объектов в вещественном виде не существует. Это графический инструмент, который позволяет изобразить электрическое поле для визуального схематического наблюдения и исследования. Через представление густоты и числа линий можно проиллюстрировать направление напряжённости поля, а также его величину.

epole3Изображение силового поля

Электрический диполь

Данный термин обозначает элементарную совокупность точечных зарядов, которые имеют системные признаки. Диполем называется сумма зарядов, противозначных, но равных по величине, и сдвинутых один от другого на определённое расстояние.

Диполи бывают разные, но наибольшее внимание физическая наука уделяет точечным диполям. Так называются диполи, которые характеризуются пренебрежимо маленьким расстоянием от отрицательного заряда до положительного. Если в теории совокупность зарядов разделить на множество частей, её можно будет рассматривать как систему электрических диполей.

elpole5Электрический дипольный момент

Краткая история изучения электрического поля

Считается, что инженер и физик Шарль Кулон стал первым исследователем взаимодействия статичных зарядов. Именно он вывел принцип их взаимодействия. Фундаментом исследований Кулона стала теория гравитационного взаимодействия Исаака Ньютона.

Ганс Эрстед стал учёным, открывшим магнитные свойства электрического тока и поля, а благодаря Джеймсу Максвеллу мы знаем, что электрическое поле не может существовать без магнитного, которое и индуцирует его. Также Максвелл утвердил концепцию близкодействия электромагнитных взаимодействий.

elpole4Ганс Эрстед и Джеймс Максвелл

Тем не менее, электрическое поле стало объектом человеческих исследований задолго до последних веков. Ещё Фалес Милетский в 7 веке до нашей эры исследовал природу статического электричества.

В конце 19 века Джозефом Томсоном был открыт электрон – «живой» образец носителя электричества. Спустя годы Эрнст Резерфорд доказал место в структуре атомов, на котором располагаются электроны.

Воздействие электрического поля на жизнь и здоровье человека

Электрическое поле волны низкой частоты, которые образуют заряд на теле человека и остаются на довольно неглубоком расстоянии от его поверхности. Протекающие в человеческом теле токи могут изменить направление своего движения под воздействием полей с переменным электротоком. Именно по этой причине некоторые люди чувствуют «шевеление» волос, когда находятся на территории воздушных линий электропередач переменного тока.

Электрическое поле может нанести человеку непоправимый вред. Как правило, негативное воздействие электричества происходит, когда люди регулярно пользуются мобильными телефонами.

Ещё один пример возможного наблюдения электрического поля в повседневной жизни – его возникновение вблизи дисплеев телевизоров с кинескопом. Если поднести руку к экрану такого телеприёмника, волоски на ней словно «вздыбятся». Это явление происходит именно из-за воздействия электрического поля.

Еще рекомендую посмотреть лекцию профессора на тему «Электрическое поле»:

Источник

Adblock
detector