электрическое и электромагнитное поле разница

workshop 4524838 1920 Отделка

Шаг за шагом

Электрическое, магнитное и электромагнитное поле

Основная трудность состоит в том, что невозможно представить себе какую-нибудь модель поля подобно тому, как мы рисуем в своем воображении упрощенную модель атома. Понятие об электрическом, магнитном и электромагнитном полях лучше всего взять из простейших опытов. Затем можно будет дополнить и развивать эти понятия, используя огромные достижения математики и физики в области изучения полей.

Электрическое поле возникает вокруг всякого электрического заряда или вокруг предмета, на котором имеется избыток зарядов какого-нибудь одного знака. Мы потерли о шерсть пластмассовую палочку дли обычную гребенку, создав на ней избыток отрицательных зарядов, и пространство вокруг гребенки приобрело какие-то особые свойства: мелкие клочки бумаги, попадая в это пространство, начинают притягиваться к ней. Каким образом наэлектризованная гребенка действует на клочки бумаги? Может быть, действие электрических сил передается через частицы окружающего воздуха?

ris25

Ни в коем случае! Если мы проделаем свой опыт в пустоте, то клочки бумаги будут так же притягиваться к гребенке, как и в воздухе или в каком-либо другом газе (рис. 25). Значит, дело здесь не в молекулах, атомах или других частицах окружающей среды. Значит, вокруг электрического заряда (в данном случае вокруг наэлектризованной гребенки) существует какое-то особое состояние пространства, какая-то особая форма материи, через которую и передается действие электрических сил. Эта особая форма материи, существующая наряду с такой известной нам формой материи, как вещество, и есть электрическое поле.

Науке уже многое известно об электрическом поле. Известно, например, что оно обладает определенной массой и запасом энергии (в нашем опыте эта энергия расходуется на перемещение к гребенке клочков бумаги). Многого об электрическом поле мы еще не знаем, однако факт его существования, подтвержденный многочисленными опытами, не может вызывать никаких сомнений.

Электромагнитное поле имеет черты как электрического поля (как говорят, имеет электрическую составляющую), так и магнитного поля (магнитная составляющая). Это значит, что электромагнитное поле могло бы при определенных условиях и поворачивать стрелку компаса, подобно магнитному полю, и перемещать электрические заряды, подобно электрическому полю. Электрическая и магнитная составляющие тесно связаны между собой, и каждая из них обладает запасом энергии, определяющим энергию всего электромагнитного поля.

Источник

Электрическое и магнитное поле: в чем различия

Термином «поле» в русском языке обозначают очень большое пространство однородного состава, например, пшеничное или картофельное.

В физике и электротехнике его используют для описания различных видов материи, например, электромагнитной, состоящей из электрической и магнитной составляющих.

1460361203 jelektricheskoe i magnitnoe pole

Электрический заряд связан с этими формами материи. Когда он неподвижен, то вокруг него всегда есть электрическое поле, а при движении образуется еще и магнитное.

Представление человека о природе электрического (более точное определение — электростатического) поля сложилось на основе исследований опытным путем его свойств, ибо другого метода изучения пока не существует. При этом способе выявлено, что оно воздействует на движущиеся и/или неподвижные электрические заряды с определенной силой. По измерениям ее величины оценивают основные эксплуатационные характеристики.

1460361256 jelektricheskoe pole zarjada

вокруг электрических зарядов (тел или частиц);

при изменениях магнитного поля, как, например, происходит во время перемещения электромагнитных волн.

Изображают его силовыми линиями, которые принято показывать исходящими из положительных зарядов и оканчивающимися на отрицательных. Таким образом, заряды являются источниками электрического поля. По действию на них можно:

выявить наличие поля;

ввести калиброванную величину для измерения его значения.

1460361200 magnitnoe pole

электрические тела и заряды, находящиеся в движении с определённым усилием;

магнитные моменты без учета состояний их движения.

Магнитное поле создается:

прохождением тока заряженных частиц;

суммированием магнитных моментов электронов внутри атомов или других частиц;

при временном изменении электрического поля.

Его тоже изображают силовыми линиями, но они замкнуты по контуру, не имеют начала и конца в противоположность электрическим.

Взаимодействие электрического и магнитного полей

Первое теоретическое и математическое обоснование процессов, происходящих внутри электромагнитного поля, выполнил Джеймс Клерк Максвелл. Он представил систему уравнений дифференциальной и интегральной форм, в которых показал связи электромагнитного поля с электрическими зарядами и протекающими токами внутри сплошных сред либо вакуума.

В своем труде он использовал законы:

Ампера, описывающие протекание тока по проводнику и создание вокруг него магнитной индукции;

Фарадея, объясняющего возникновение электрического тока от воздействия переменного магнитного поля на замкнутый проводник.

1460361287 jelektricheskoe i magnitnoe pole

1460361250 peremennyjj potok magnitnogo polja

Труды Максвелла определили точные соотношения между проявлениями электрических и магнитных полей, зависящих от распределенных в пространстве зарядов.

1460361279 izobrazhenie jelektromagnitnogo polja

После публикации работ Максвелла прошло уже много времени. Ученые постоянно изучают проявления опытных фактов между электрическими и магнитными полями, но даже сейчас не особо получается выяснить их природу. Результаты ограничиваются чисто практическим применением рассматриваемых явлений.

Объясняется это тем, что с нашим уровнем знаний можно только строить гипотезы, ибо пока мы способны лишь предполагать что-то. Ведь природа обладает неисчерпаемыми свойствами, которые еще предстоит много и длительно изучать.

Сравнительная характеристика электрического и магнитного полей

Взаимную связь между полями электричества и магнетизма помогает понять очевидный факт: они не обособленны, а связаны, но могут проявляться по-разному, являясь единым целым — электромагнитным полем.

Если представить, что в какой-то точке пространства создано неоднородное поле электрического заряда, неподвижное относительно поверхности Земли, то определить вокруг него магнитное поле в состоянии покоя не получится.

1460361249 jelektricheskoe i magnitnoe pole po

Если же наблюдатель начнет перемещаться относительно этого заряда, то поле станет меняться по времени и электрическая составляющая образует уже магнитную, которую сможет увидеть своими измерительными приборами настойчивый исследователь.

Аналогичным образом эти явления проявятся тогда, когда на какой-то поверхности расположен неподвижный магнит, создающий магнитное поле. Когда наблюдатель станет перемещаться относительно него, то он обнаружит появление электрического тока. Этот процесс описывает явление электромагнитной индукции.

Поэтому говорить о том, что в рассматриваемой точке пространства имеется только одно из двух полей: электрическое или магнитное, не имеет особого смысла. Этот вопрос надо ставить применительно к системе отсчета:

Другими словами, система отсчета влияет на проявление электрического и магнитного поля таким же образом, как рассматривание пейзажей сквозь светофильтры различных оттенков. Изменение цвета стекол влияет на наше восприятие общей картинки, но, оно, даже если принять за основу естественный свет, создаваемый проходом солнечных лучей через воздушную атмосферу, не даст истинной картины в целом, исказит ее.

Значит, система отсчета является одним из способов изучения электромагнитного поля, позволяет судить о его свойствах, конфигурации. Но, она не обладает абсолютной значимостью.

Индикаторы электромагнитных полей

Электрически заряженные тела используют в качестве индикаторов, указывающих на наличие поля в определенном месте пространства. Ими, для наблюдения электрической составляющей, могут использоваться наэлектризованные мелкие кусочки бумаги, шарики, гильзы, «султаны».

1460361284 issledovanie jelektrostaticheskogo polja

Рассмотрим пример, когда по обе стороны плоского наэлектризованного диэлектрика расположены на свободном подвесе два индикаторных шарика. Они будут одинаково притягиваться к его поверхности и вытянутся в единую линию.

На втором этапе между одним из шариков и наэлектризованным диэлектриком поместим плоскую металлическую пластину. Она не изменит действующие на индикаторы силы. Шарики не поменяют свое положение.

Третий этап эксперимента связан с заземлением металлического листа. Сразу только как это произойдет, индикаторный шарик, расположенный между наэлектризованным диэлектриком и заземленным металлом, изменит свое положение, сменив направление на вертикальное. Он перестанет притягиваться к пластине и будет подвержен только гравитационным силам тяжести.

Этот опыт показывает, что заземленные металлические экраны блокируют распространение силовых линий электрического поля.

В этом случае индикаторами могут выступать:

замкнутый контур с протекающим по нему электрическим током;

магнитная стрелка (пример с компасом).

1460361219 stalnye opilki

Принцип распределения опилок из стали вдоль магнитных силовых линий является наиболее распространенным. Он же заложен в работу магнитной стрелки, которая, для уменьшения противодействия сил трения, закрепляется на остром наконечнике и этим получает дополнительную свободу для вращения.

Законы, описывающие взаимодействия полей с заряженными телами

Прояснению картины процессов, происходящих внутри электрических полей, послужили опытные работы Кулона, осуществляемые с точечными зарядами, подвешенными на тонкой и длинной нити из кварца.

1460361276 opyty kulona

Когда к ним приближали заряженный шарик, то последний влиял на их положение, заставляя отклоняться на определенную величину. Это значение фиксировалось на лимбе шкалы специально сконструированного прибора.

Таким способом были выявлены силы взаимного действия между электрическими зарядами, называемые электрическим, Кулоновским взаимодействием. Они описаны математическими формулами, позволяющими проводить предварительные расчеты проектируемых устройств.

1460361257 zakon kulona

Здесь хорошо работает закон, описанный Ампером на основе взаимодействия проводника с током, размещенного внутри магнитных силовых линий.

1460361279 zakon ampera

Для направления действия силы, осуществляющей воздействие на проводник с протекающим по нему током, применяют правило, использующее расположение пальцев на левой руке. Четыре соединенных вместе пальца необходимо расположить по направлению тока, а силовые линии магнитного поля должны входить в ладонь. Тогда оттопыренный большой палец укажет направление действия искомой силы.

Графические изображения полей

Для их обозначения на плоскости чертежа используются силовые линии.

Для обозначения линий напряженности в этой ситуации используют потенциальное поле, когда имеются неподвижные заряды. Силовая линия выходит из положительного заряда и направляется в отрицательный.

Примером моделирования электрического поля может служить вариант размещения кристаллов хинина в масле. Более современным способом считается использование компьютерных программ графических проектировщиков.

Они позволяют создавать изображения эквипотенциальных поверхностей, судить о численном значении электрического поля, анализировать различные ситуации.

1460361200 modelirovanie jelektricheskogo polja

У них для наглядности отображения применяются линии, характерные для вихревого поля, когда они замкнуты единым контуром. Приведенный ранее пример со стальными опилками наглядно отображает это явление.

Их принято выражать векторными величинами, имеющими:

определённое направление действия;

значение силы, рассчитываемое по соответствующей формуле.

Вектор напряженности электрического поля у единичного заряда можно представить в форме трехмерного изображения.

1460361282 naprjazhennost jelektricheskogo polja

направлена от центра заряда;

имеет размерность, зависящую от способа вычисления;

определяется бесконтактным действием, то есть на расстоянии, как отношение действующей силы к заряду.

Напряженность, возникающую в катушке, можно рассмотреть на примере следующей картинки.

1460361191 naprjazhennost magnitnogo polja katushki

Силовые магнитные линии в ней от каждого витка с внешней стороны имеют одинаковое направление и складываются. Внутри межвиткового пространства они направлены встречно. За счет этого внутреннее поле ослаблено.

На величину напряженности влияют:

сила проходящего по обмотке тока;

количество и плотность намотки витков, определяющих осевую длину катушки.

Повышенные токи увеличивают магнитодвижущую силу. Кроме того, в двух катушках с равным числом витков, но разной плотностью их намотки, при прохождении одного и того же тока эта сила будет выше там, где витки расположены ближе.

Таким образом, электрическое и магнитное поля имеют совершенно определенные отличия, но являются взаимосвязанными составляющими единого общего — электромагнитного.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Электрическое и магнитное поле: в чем различия

Такой термин, как «поле» в нашем языке имеет общее, достаточно обширное понятие (например, картофельное или футбольное). А вот в точных науках, таких как физика и электротехника — это название применяется для того, чтобы описать определенные виды материи. Так, электромагнитная материя представляет собой две составных части: электрическую и магнитную.

pool22

С указанными формами материи непосредственно связан электрический заряд. И у этого заряда имеется характерная особенность. В неподвижном состоянии вокруг него постоянно существует электрическое поле, а как только заряд начинает осуществлять направленное движение, то появляется еще и магнитное поле. Рассмотрим характерные особенности электрического и магнитного полей по отдельности.

Два поля

slide 3

В процессе проведения исследований и в целях боле эффективного практического применения данного явления, ему дано название напряженность. Оценивается по степени воздействия на единичный (с положительным знаком) заряд.

slide 1

Здесь также применяется метод графического изображения при помощи силовых пунктирных линий. Но в отличие от схематического изображения электрического поля, эти линии замкнуты по контуру и не имеют определенной точки начала (равно, как и конца).

Как происходит взаимодействие электрического и магнитного полей

Первые достаточно точные обоснования и выводы (как теоретические, так и практические) по результатам исследований процессов внутри данных полей сделал великий ученый Д. Максвелл. Он показал, какая взаимосвязь происходит между эклектическими зарядами и протекающими токами электромагнитного поля. Для проведения исследований и получения результатов, были применены ранее сформулированные законы Ампера и Фарадея. В трудах физика было определено точное соотношение между электрическим и магнитным полем, которое возникало вследствие определенного способа распределения зарядов в пространстве.

img17

Сравнение полей: электрического и магнитного

Важно понять, что электрическое и магнитное поле – это не обособленные понятия, а единый комплекс, получивший название электромагнитного поля. Следовательно, и изучать это поле необходимо параллельно, относясь к исследуемому явлению, как к единому целому.

Утверждение, что в какой-либо определенной точке пространства может иметься только одно из действующих полей, не может быть принято во внимание, более того – оно бессмысленно. Вопрос может быть поставлен исключительно с учетом типа исследуемой системы, которая может быть стационарной или подвижной.

В целом, сама система отсчета – это составная часть исследования электромагнитного поля. По характеристикам системы можно делать оценку, касательно свойств и конфигурации электромагнитного поля. Но абсолютной значимости система не имеет.

Что может быть применено в качестве индикаторов электромагнитного поля

Для электрического поля – это заряженные тела. Именно они указывают на наличие в определенном месте пространства поля. При проведении опытов и наблюдений широко используются такие подручные материалы, как:

– мелкие кусочки бумаги;

– небольшие комочки, бумажные шарики;

– так называемые «султаны».

Чтобы «увидеть» магнитное поле, можно использовать стальные опилки либо замкнутый контур, по которому протекает электрический ток. Еже проще – использовать магнитную стрелку, которая имеется на каждом компасе.

ris25

«Законодательная база»

Исследование полей, магнитного и электрического, осуществляется по ранее открытым физическим законам. Так, для электрического поля, при исследовании протекающих внутри него процессов, бесценную помощь оказали исследования и опыты, проведенные кулоном. Магнитное поле проще себе представить, воспользовавшись законом Ампера, применительно к расположению ладони человека. Так, чтобы определить направление действия силы, воздействующей на проводник, необходимо расположить ладонь следующим образом:

– 4 пальца, сложенные вместе, указывают на направление протекающего тока;

– силовые линии магнитного поля входят в ладонь;

– большой палец руки, находящийся под углом в 90 градусов по отношению к другим пальцам ладони, укажет направление воздействия искомой силы.

Подведем итог

В заключении необходимо отметить: электрическое и магнитное поля существенно отличаются друг от друга. Но это не мешает им тесно взаимодействовать, оставаясь составными частями одного целого – электромагнитного поля!

Похожие статьи по теме

period peremennogo toka 300x203

elektrik 300x220

maxresdefault 300x169

%D0%92%D0%BE%D0%BF%D1%80%D0%BE%D1%81%D1%8B %D0%B4%D0%BB%D1%8F %D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D0%BA%D0%B0 300x221

Поделитесь своим мнением Отменить ответ

Популярное на сайте

%D0%9A%D0%B0%D0%BA %D0%BE%D1%82%D0%BB%D0%B8%D1%87%D0%B8%D1%82%D1%8C %D0%A3%D0%97%D0%9E %D0%BE%D1%82 %D0%B4%D0%B8%D1%84%D0%B0%D0%B2%D1%82%D0%BE%D0%BC%D0%B0%D1%82%D0%B0

%D0%90%D0%A1%D0%91 6 %D0%90%D0%A1%D0%912%D0%BB 6 %D0%B4%D0%BE 6 %D0%BA%D0%92

%D0%A0%D0%B5%D0%BC%D0%BE%D0%BD%D1%82 %D0%B2%D0%B0%D1%80%D0%BE%D1%87%D0%BD%D0%BE%D0%B9 %D0%BF%D0%B0%D0%BD%D0%B5%D0%BB%D0%B8

%D0%9F%D1%80%D0%B5%D1%81%D1%81 %D0%BA%D0%BB%D0%B5%D1%89%D0%B8

%D0%A1%D1%85%D0%B5%D0%BC%D0%B0 %D1%81%D0%B1%D0%BE%D1%80%D0%BA%D0%B8 %D1%80%D0%B0%D1%81%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0%B8%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D0%B3%D0%BE %D1%89%D0%B8%D1%82%D0%BA%D0%B0

%D0%91%D0%B5%D1%81%D1%82%D0%BE%D0%BF%D0%BB%D0%B8%D0%B2%D0%BD%D1%8B%D0%B5 %D0%B3%D0%B5%D0%BD%D0%B5%D1%80%D0%B0%D1%82%D0%BE%D1%80%D1%8B

%D0%A3%D0%BC%D0%BD%D1%8B%D0%B5 gsm %D1%80%D0%BE%D0%B7%D0%B5%D1%82%D0%BA%D0%B8

Опросы

Наш сайт Все-электричество предоставляет вашему вниманию подробную информацию об электрике. Публикация наших материалов может разрешаться только в том случае если вы укажите ссылку на источник с указанием нашего проекта. Перед использованием нашего проекта рекомендуем прочесть пользовательское соглашение. Вся информация на сайте Все-электричество предоставлена в ознакомительных и познавательных целях. За применение этой информации администрация сайта ответственности не несет.

Источник

Электрическое и электромагнитное поле

В природе существует электрические и магнитные поля, взаимодействующие между собой и, при определённых условиях могут порождающие друг друга.

Электрическое поле является частью электромагнитного поля.

Электромагнитное поле – это итог взаимодействия электрического и магнитного полей, фундаментальное физическое поле, которое возникает вокруг заряженных тел. Таким образом, электрическое поле – это часть поля электромагнитного, которое в свою очередь порождает электромагнитные волны, распространяющиеся в пространстве со скоростью света. Это не что иное, как возмущения электромагнитного поля.

Магнитное поле

При прохождении электрического тока по проводнику вокруг него образуется магнитное поле.

Магнитное поле, это часть электромагнитного поля.

Оно обладает энергией, которая проявляет себя в виде электромагнитных сил, действующих на отдельные движущиеся электрические заряды (электроны и ионы) и на их потоки, т. е. электрический ток. Под влиянием электромагнитных сил движущиеся заряженные частицы отклоняются от своего первоначального пути в направлении, перпендикулярном полю. Магнитное полеобразуется только вокруг движущихся электрических зарядов, и его действие распространяется тоже лишь на движущиеся заряды. Магнитное и электрические поля неразрывны и образуют совместно единое электромагнитное поле. Всякое изменение электрического поля приводит к появлению магнитного поля и, наоборот, всякое изменение магнитного поля сопровождается возникновением электрического поля. Электромагнитное поле распространяется со скоростью света, т. е. 300 000 км/с.

В электротехнике принято рассматривать свойства электрического и магнитного полей по отдельности.

image009

Рис. 2 Структура магнитного поля

Графическое изображение магнитного поля. Графически магнитное поле изображают магнитными силовыми линиями или линии магнитной индукции, которые проводят так, чтобы направление силовой линии в каждой точке поля совпадало с направлением сил поля (рис.3); магнитные силовые линии всегда являются непрерывными и замкнутыми. Направление магнитного поля в каждой точке может быть определено при помощи магнитной стрелки. Северный полюс стрелки всегда устанавливается в направлении действия сил поля. Конец постоянного магнита, из которого выходят силовые линии (рис. 6), принято считать северным полюсом, а противоположный конец, в который входят силовые линии,— южным полюсом (силовые линии, проходящие внутри магнита, не показаны). Распределение силовых линий между полюсами плоского магнита можно обнаружить при помощи стальных опилок, насыпанных на лист бумаги, положенный на полюсы. Для магнитного поля в воздушном зазоре между двумя параллельно расположенными разноименными полюсами постоянного магнита характерно равномерное распределение силовых магнитных линий (силовые линии, проходящие внутри магнита, не показаны).

Линии магнитной индукции— это линии, касательными к которой в любой её точке является вектор магнитной индукции.

image010

Рис. 3 Линия магнитной индукции

Наблюдается между пластинами плоского конденсатора, внутри соленоида (если его диаметр много меньше его длины) или внутри полосового магнита.

Соленоид— это катушка из провода с железным сердечником.

image012

Рис. 4 Однородное магнитное поле между полюсами постоянного магнита.

Магнитное поле прямого проводника с током изображается в виде концентрических окружностей:

image013

image014

где image015— направление тока в проводнике на нас перпендикулярно плоскости листа,
image016— направление тока в проводнике от нас перпендикулярно плоскости листа.

Рис. 5 Направление тока в проводнике


Магнитное поле соленоида:

h

image017

Рис. 6 Магнитное поле соленоида

Магнитное поле полосового магнита:

— аналогично магнитному полю соленоида.


СВОЙСТВА ЛИНИЙ МАГНИТНОЙ ИНДУКЦИИ


НАПРАВЛЕНИЕ ЛИНИЙ МАГНИТНОЙ ИНДУКЦИИ

— определяется по правилу буравчика или по правилу правой руки.

Правило буравчика( в основном для прямого проводника с током):

Если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитного поля тока.

image019

Рис. 7 Правило буравчика

Правило правой руки ( в основном для определения направления магнитных линий
внутри соленоида):

Если обхватить соленоид ладонью правой руки так, чтобы четыре пальца были направлены вдоль тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида.

image020

Рис.8 Правило правой руки

Существуют другие возможные варианты применения правил буравчика и правой руки.

Таким образом, для получения магнитного поля необходимо иметь катушку с железным сердечником.

Все электрические машины и трансформаторы используют магнитное поле, следовательно, все они имеют обмотки с сердечником.

Источник